McCain Site Randolph County, North Carolina

Stream Restoration Plan

Contract No. EW-02040S

State Project No. 020594001

North Carolina Ecosystem Enhancement Program

June 2005

EXECUTIVE SUMMARY

The North Carolina Department of Transportation (NCDOT) initiated the McCain Property Stream Restoration Feasibility Study in April 2003 to evaluate the feasibility of restoring a degraded section of an unnamed tributary to Back Creek (UTBC). The purpose of this mitigation project would be to compensate for unavoidable stream and buffer impacts in the Upper Yadkin River Basin resulting from planned NCDOT Transportation Improvement Projects. With the creation of the North Carolina Ecosystem Enhancement Program (EEP), this project was shifted to this new agency for completion.

The project site is part of a 71.54-acre parcel owned by Ms. Sigrid N. McCain that is located approximately one mile southeast of the intersection of Lake Lucas Road (SR 1518) and Spero Road (SR 1504) in Sophia, Randolph County, North Carolina. The property is an active livestock farm, with a portion of the property dedicated to pasture and livestock grazing. The primary land uses on the property include rangeland, agriculture (small grain), and hardwood forest. UTBC is a second-order, perennial stream that drains in a southerly direction across the subject property before joining Back Creek. The 2,475-foot project reach is located within USGS Hydrologic Unit 03040103050050 (Lower Yadkin watershed), in a non-targeted portion of the NC Division of Water Quality (NCDWQ) Sub-basin 03-07-09.

A significant portion of UTBC within the project site has been degraded due to poor grazing management and the removal of riparian vegetation. The stream channel in several locations was historically relocated hard against the valley walls to open of the valley bottom for farming.

Coordination with the landowner was conducted to identify current and planned land use requirements associated with the project site. A Rosgen Level III assessment and qualitative stream stability evaluations were conducted to characterize existing stream conditions and determine the potential for restoration. Further, the presence of conditions or characteristics that have the potential to constrain restoration activities on the project site was evaluated.

A reference reach study of Richland Creek in a nearby watershed and an upstream reach of UTBC were conducted. A rain gage, stream gages and scour chains were installed on the UTBC in the project site to evaluate flows and sediment transport. From sediment transport modeling, a design shear stress was established for the anticipated gradation of the relocated streambed. Based on the reference reach surveys and sound geomorphic principles, the proposed mitigation stream alignment, profile and typical cross sections were developed.

The proposed stream restoration plan is to build a 2,445-foot long meandering stream that falls within the Rosgen stream types Bc4 and C4. Two stream types are necessary because the valley slope changes through the project site. The proposed stream will be relocated off of the existing valley walls into the bottom of the valley. This relocation stream channel was adjusted in profile such that the channel bed will be located in an alluvial gravel layer that has been observed in the valley. The stream channel cross sections were designed to be hydraulically stable with a gravel stream bed. A minimum width 50-foot buffer will be provided on both sides of the proposed channel. This buffer will have 3660-feet of exclusion fence, three stable stream crossings, and a re-vegetation plan. This re-vegetation of the 8.4-acre conservation easement will consist of shrubs on the stream channel banks and woody plantings on the floodplain within the exclusion fencing.

TABLE OF CONTENTS

1.0	Intr	oduction1	
	1.1	General Description	
	1.2	USGS and NCDWQ River Basin Designations1	-
2.0	Proj	ect Site Location1	L
	2.1	General Description1	
	2.2	USGS and NCDWQ River Basin Designations1	-
	2.3	NCDWQ Surface Water Classification	;
3.0	Wat	ershed Characterization3	;
	3.1	General Description	,
	3.2	Drainage Area	;
	3.3	Land Use and Development Potential	;
	3.4	Historic Resources	;
	3.5	Cultural and Archaeological Resources4	ŀ
	3.6	Effect on Natural Resources	ŀ
4.0	Exis	ting Site Conditions Survey	;
	4.1	General Site Description	;
	4.2	Geology and Soils	;
	4.3	Existing Riparian Buffer and Natural Communities)
	4.4	Existing Stream Characterization)
		4.4.1 Morphological Description)
		4.4.2 Channel Evolution Stage)
		4.4.3 Stability Assessment	
	4.5	Constraints Evaluation	;
		4.5.1 Hazardous Materials	;
		4.5.2 Utilities and Easements	;
		4.5.3 Hydrologic Trespass	;
5.0	Refe	rence Reach Analysis	;
6.0	Rest	oration Design	;
	6.1	Stream	j
	6.2	Riparian Buffers)
7.0	Sedi	ment Transport Analysis)
	7.1	Competency)
	7.2	Capacity	
8.0	Floo	ding Analysis	L
9.0	Mon	itoring and Evaluation	2
	9.1	Duration)
	9.2	Reporting	2
	9.3	Stream Stability)
		9.3.1 Dimension	2
		9.3.2 Pattern	,

Refe	rences.		34
9.5	Bank a	and Riparian Vegetation Monitoring	33
	9.4.3	Additional Photograph Locations	33
	9.4.2	Longitudinal Photograph Reference Points	33
	9.4.1	Cross Section Reference Points	33
9.4	Photog	graphic Reference Points	33
	9.3.4	Bed Materials	33
	9.3.3	Profile	33

FIGURES

Figure 1.	Vicinity Map	2
Figure 2.	Project Drainage	5
Figure 3.	Soils	6
Figure 4.	Land Use/Land Cover	7
Figure 5.	Existing Conditions	9
Figure 6.	Aggradation – Degradation Stream Evolution Sequence	
Figure 7.	Stream Profile	19
Figure 8.	Constrictor Cross-section	
Figure 9.	Proposed Cross-sections	
Figure 10.	Proposed Cross-sections	
Figure 11.	Proposed Cross-sections	
Figure 12.	Proposed Cross-sections	
Figure 13.	Project Location and Plan Layout	
Figure 14.	Details: Typical In-Stream Structures	
Figure 15.	Restoration Plan	
Figure 16.	Restoration Plan	
Figure 17.	Restoration Plan	
Figure 18.	Planting Plan	
Figure 19.	Planting Plan	
Figure 20.	Planting Plan	

TABLES

Table 1.	Summary of Existing Channel Morphology	10
Table 2.	Summary of Design Constraints	14
Table 3.	Property Ownership History	14
Table 4.	Priority Levels of Incised River Restoration	17
Table 5.	Morphological Design Criteria	18

APPENDICES

Appendix A.	SHPO Documentation
Appendix B.	Natural Heritage Program Findings Letter
Appendix C.	Project Site Existing Conditions Data
Appendix D.	Stream Design & Spreadsheets
Appendix E.	Reference Reach Data
Appendix F.	Sediment Transport Data
	-

1.0 INTRODUCTION

The North Carolina Department of Transportation (NCDOT) initiated the McCain Property Stream Restoration Feasibility Study in April 2003 to evaluate the feasibility of restoring a degraded section of an unnamed tributary to Back Creek (UTBC). The purpose of this mitigation project would be to compensate for unavoidable stream and buffer impacts in the Yadkin River Basin resulting from planned NCDOT Transportation Improvement Projects. With the creation of the North Carolina Ecosystem Enhancement Program (EEP) this project was shifted to this new agency for completion.

1.1 **Project Description**

The EEP intends on utilizing the McCain Site in Randolph County for a comprehensive restoration of the stream and its woody corridor across an active cattle-rearing pasture. This restoration plan presents detailed information regarding the existing site and watershed conditions, the morphological design criteria developed from a selected reference reach, and the project design parameters based upon natural channel restoration methodologies.

1.2 Project Goals and Objectives

The goals and objectives of the McCain Site Mitigation Project are to:

- Restore stable channel morphology that is capable of moving the flows and sediment provided by its watershed;
- Reduce sediment-related water quality impacts resulting from lateral bank erosion and bed degradation on the downstream Back Creek and reservoir;
- Improve aquatic habitat diversity through the enhancement of riffle-pool bed variability and the use of instream structures;
- Restore vegetative riparian buffers and vegetated channel banks utilizing native plant species; and,
- Provide a fenced corridor with stabilized access for cattle watering.

2.0 PROJECT SITE LOCATION

2.1 General Description

The project site is a 2,475-foot section of perennial stream that is situated on part of a 71.54-acre parcel owned by Ms. Sigrid N. McCain that is located approximately one mile southeast of the intersection of Lake Lucas Road (SR 1518) and Spero Road (SR 1504) in Sophia, Randolph County, North Carolina (Figure 1. Vicinity Map). UTBC is a second-order, perennial stream that drains in a southerly direction across the subject property before joining Back Creek.

The property is an active livestock farm, with a portion of the property dedicated to pasture and livestock grazing. The primary land uses on the property include rangeland, agriculture (small grain), and hardwood forest. There is a large pole barn for storing livestock feed and agricultural machinery. A private residence and two small storage sheds are located in the southwestern portion of the subject property. UTBC and its associated riparian area run along the eastern property boundary.

2.2 USGS and NCDWQ River Basin Designations

The project reach is located within USGS Hydrologic Unit 03040103050050 (Yadkin River Basin), in a non-targeted portion of the NC Division of Water Quality (NCDWQ) Sub-basin 03-07-09.

1

2.3 NCDWQ Surface Water Classification

The NCDWQ assigns surface waters a classification in order to help protect, maintain, and preserve water quality. The unnamed tributary to Back Creek has not been rated by the NCDWQ. However, Back Creek (NCDWQ Stream Index Number 13-2-3-3-(0.3)) from its source to a point one mile downstream of Randolph County SR 1504 is designated a "WS-II HQW" usage classification (NCDENR, 2002). WS-II indicates waters protected as water supplies, which are usually in predominantly undeveloped watersheds and only general permits for discharges are allowed. WS-II waters are also protected for Class C uses, which include fishing, wildlife, fish and aquatic life propagation and survival, agriculture, and secondary recreation that involve human body contact with the water. The "HQW" is a supplemental classification intended to protect water bodies with water quality higher than state standards. WS-II waters are HQW by definition.

3.0 WATERSHED CHARACTERIZATION

3.1 General Description

The project site is located in a rural setting within the Carolina Slate Belt ecoregion of the Piedmont physiographic province. Site topography is characterized as rolling to hilly with elevations ranging from 670 feet above mean sea level (AMSL) near the McCain residence to 530 feet AMSL at the downstream project limits on UTBC. The elevation change along UTBC falls from approximately 550 feet at the upper part of the site to approximately 530 feet at the lower end of the project, a longitudinal valley distance of 1,988 feet (1.0% mean slope).

3.2 Drainage Area

The drainage area contributing to the most downstream extent of the project reach is 0.88 square miles (Figure 2. Project Drainage). The soils types of the watershed are presented in Figure 3 (Soils).

3.3 Land Use and Development Potential

An Anderson Level I classification indicates that the contributing drainage area consists of: forest (67%), agriculture (16%), rangeland (12%), and urban (4%) land use / land cover (Figure 4. Land Use /Land Cover). Due to the rural nature of the area, the potential exists for future development. However, development pressures are currently considered low, and there are currently no obvious signs of development.

3.4 Historical Resources

Historic aerial photographs were obtained from the Randolph County Natural Resources Conservation Service (NRCS) office in order to enhance the assessment of existing site conditions. The intent of the review was to understand the chronology of land disturbance and aid in the evaluation of the site and the development of an appropriate restoration strategy. Aerial photographs of the site were obtained from 1937, 1957, and 1966.

In 1937, the subject property looked very similar to current conditions; no significant differences are discernable at the scale and quality of the photo. The stream valley was cleared at that time, and presumably used for agriculture or pasture. The stream channel appeared to follow the pattern observable today. No changes in either the stream valley or stream channel within the project area were observed in the 1957 or 1966 aerial photographs. Therefore, any alterations to the stream channel occurred before 1937, and there have been no significant changes to the project area since then.

3.5 Cultural and Archaeological Resources

To evaluate the presence of significant cultural resources on the subject property and the potential that the proposed project would impact them, KCI requested a formal review at the North Carolina Department of Cultural Resources, State Historic Preservation Office (SHPO). No historic preservation sites nor sites of archeological importance were noted on the McCain Property (See Appendix A).

3.6 Effect on Natural Resources

Rare, Threatened, or Endangered Species (RTE)

KCI conducted an informal file review at the North Carolina Natural Heritage Program's (NHP) office in order to identify the potential for the presence of rare, threatened, or endangered species within a one-mile radius of the project site. This review did not reveal the presence of any known rare, threatened, or endangered species. Appendix B includes the NHP list of Rare, Threatened, and Endangered Species and Critical Habitats in Randolph County and the state and federal status for each species.

Additionally, KCI requested a formal review by the NHP to identify the presence of rare species, critical habitats, and priority natural areas on the project site and to determine the potential impact of the proposed project on these resources. In a letter dated May 21, 2003, the NHP indicated that there are no records of such resources either at the site or within one mile of the project area.

Wetlands

A review of the Randleman, North Carolina National Wetland Inventory (NWI) Map identified no wetlands within the project study area. Further, no wetlands were identified in the project study area during the field investigation (April 2003).

4.0 EXISTING CONDITIONS ASSESSMENT

A site field assessment was conducted in April 2003 to document existing conditions and evaluate the potential for stream and riparian buffer restoration. Observations and collected data are described below, illustrated in Figure 5 Existing Conditions and documented in the site photographs (Appendix C). The site was revisited from April to December 2004 several times to take further measurements, to install a rain gage and stream gages, to sample the stream bed, to survey the immediate upstream reach to compare with a reference reach, and several times to download data and take more sediment samples.

4.1 General Site Description

As the project location can be seen on the Figure 5; the valley has four natural bends, in which the stream channel flows near the low spot in the valley. It appears that in the two western bends of the valley that the stream may have been relocated hard against the valley wall to allow the valley bottom to be actively farmed, then pastured. Such an active relocation was undisputedly found on the upstream adjacent property.

In the two western valley bends, the channel is incised, with this incision extending through the *Dogue* loamy soil and into soils and sediment deposits, which are over 300 years old and predate the *Dogue's* depositional event. The upstream western bend in the valley appears to have eroded through a channery deposit and eroded down to bedrock in places. The downstream western bend in the valley is adjacent to some severe gully erosion caused by cattle taking short cuts to the stream channel. The two eastern bends of the valley are in better condition partly due to fences on the east bank preventing the cattle from climbing the far banks. In the upstream eastern valley bend, the stream does not strike the valley wall but, is never the less, heavily impacted by cattle movement because its low banks allow easy access. The lower eastern valley bend has the only true meandering stretch of stream channel that has exposed some bedrock. This meandering has caused some outer bends to consist of severely eroded valley wall cuts.

The unlimited access to the stream channel by rearing cattle (weaned calves to heifers and young bulls) has resulted in stream banks that have little vegetation and a channel bottom that has been thoroughly mixed and in some places compacted. The three tributaries on the project site also have some erosion problems, partly due to the down cutting of the main valley channel over the last century. The project ends where this meandering valley confluences with the much larger floodplain in the Back Creek valley. The project site is the only place on this un-named tributary to Back Creek where the creek is not bordered by forest. A mile downstream on Back Creek is a small water supply reservoir.

4.2 Geology and Soils

Local geology consists of metamorphic rocks of the Charlotte and Milton Belts overlying metamorphic rocks within the Carolina Slate Belt. These include metamorphosed volcanic rock, metamudstone, meta-sandstone, and metaconglomerates. These metamorphic rocks date from the Cambrian Period to the Late Proterozoic Era (500 to 900 million years ago). Predominant soil types located within the project site include *Dogue* sandy loam and Goldston very channery silt clay loam in the stream valley, and Badin-Tatum complex in the upland pasture. The predominant soil types within the project watershed include Badin-Tatum complex and Georgeville silty clay loam.

Dogue sandy loam (DoB) is nearly level, very deep, somewhat poorly drained soil found on floodplains, formed in alluvial deposits. *Dogue* soils are subject to frequent flooding, and have inclusions of hydric soils or wet spots. *Badin-Tatum complex (BfB2, BfC2, BtB2, BtC2, and BaD)* soils consist of strongly sloping *Badin* soils and *Tatum* soils on uplands. These soils formed in residuum from Carolina slates and other fine-grained rocks, and are moderately deep to deep and well-drained. *Georgeville silty clay loam (GeB2)* soils are

gently sloping, very deep, well-drained, eroded soils found on uplands. *Goldston very channery silt clay loam* (*GoE*) is moderately steep to steep, shallow, well-drained to excessively drained soils found on uplands. These soils formed in residuum from Carolina slates.

4.3 Existing Riparian Buffer and Natural Communities

The existing riparian buffer is a rural cattle rearing pasture, which is largely devoid of natural habitat communities within the fence line. At one location on the project, the east side of the floodplain is fenced and a herbaceous community exists with a mix of wetland and upland species. Trees along the stream are limited to top of bank, interspersed with open areas, with only a few good connections to the woods on the valley slopes. The valley on the upstream adjacent property is entirely forested with good understory and ground level strata.

4.4 Existing Stream Characteristics

4.4.1 Morphological Description

A Rosgen Level III assessment was conducted to gather existing stream dimension, pattern, and profile data and determine the potential for restoration. Channel cross-sections and bed materials were surveyed at four representative locations along UTBC. Data developed from these surveys are summarized below (Table 1) with detailed data provided in Appendix D.

Parameter	UTBC XS-1	UTBC XS-2	UTBC XS-3	UTBC XS-4
A _{bkf} (sq ft)	21.30	26.00	25.70	29.30
$W_{bkf}(ft)$	19.36	21.17	14.63	19.41
$W_{fpa}(ft)$	34.0	NA	125.0	125.0
$d_{mbkf}(ft)$	1.72	2.34	3.48	3.34
D _{bkf} (ft)	1.10	1.23	1.76	1.51
W/D ratio	17.6	17.2	8.3	12.9
Entrenchment Ratio	1.76	NA	8.54	6.44
Bank Height Ratio	1.03	1.69	0.99	1.06
Local W. S. Slope (ft/ft)	0.011	0.0002	0.0014	0.0025
Discharge (cfs)	83.93	NA	61.44	87.76
D ₅₀ (mm)	22	9	0.34	0.2
Stream Type	B4c		E5	C5

 Table 1. Summary of Existing Channel Morphology.

4.4.2 Channel Evolution Stage

Conceptual channel evolution models are used to describe the sequential changes a stream undergoes after disturbance and predict its most probable stable endpoint (stream type). The Simon Channel Evolution Model (Simon, 1989), commonly used in sand or strongly alluvial systems, cannot be used at the McCain site for two reasons. The un-named tributary to Back Creek is relatively steep and functions primarily as a sediment transport reach with some bedrock control. The floodplain soil, *Dogue*, is a loam soil that primarily becomes wash load when eroded. These two situations prevent the Simon's Stage IV/V from developing. The Simon model is based on the degradation to aggregation stream evolution sequence. However, on the lower UTBC, the backwater conditions from Back Creek have created a transitional reach into the Back Creek floodplain that from all indications appears to be Stage IV/V, however the depositional processes are completely different from that in the Simon Channel Evolution Model.

The stream on the McCain site follows an aggregation to degradation stream evolution model (Schlindwein, 2004). In the late 1700s or early 1800s, the watershed was largely clear of the climax forest and the land utilized for row crops for decades. The steep slopes of the watershed lost their topsoil due to rainfall and erosion quickly. This eroded topsoil ended up being deposited on the original floodplain. The original floodplain may have been gravely and poorly suited to agriculture. The marginal fields of the watershed were abandoned and allowed to reforest. The deposition of eroded topsoil on the floodplain slowed down to the point that the newly deposited *Dogue* soil became attractive bottomland for agriculture. With every spring flood, a new layer of soil deposited on this floodplain (called "made land") that did not need to be fertilized each year to be productive. However, as the thick topsoil was lost from most of the watershed and forest re-established on steep slopes, the sediment delivery to the stream system reduced significantly sometime after the Civil War. This was the end of the aggregation phase of the stream evolution for most watersheds in the Piedmont.

With less sediment from these watersheds, the stream flow became "hungry water" and it gullied through the *Dogue* soil deposits. In any cases this gulling was in direct conflict with the farmer's efforts to crop these bottomlands, the streams were relocated hard against valley walls so that the fertile bottomlands could be utilized. However with the end of "made land", these *Dogue* soils with low levels of organics and clay quickly became unproductive. In many cases these bottomlands were abandoned to reforest or converted to pasturing. The steam types during this evolutionary phase went from being gullies to a wider eroded stream type and possibly stabilized as a meandering stream type.

Figure 6. Aggradation – Degradation Stream Evolution Sequence (D. Rosgen)

The sequence of stream types using the Rosgen (1996) classification system is E-C-D-G-F-C, shown in Figure 6. The E-C-D is the aggregation sequence and the G-F-C is the degradation sequence. The E channel type is a low sediment load meandering stream. The C channel type is a meandering riffle and pool sequence with a good sediment load. The D channel type is a shallow braided channel that is choked with sediment. The F channel type is a broad incised channel with long runs and short pools that can be stable in the humid east with woody vegetation on its banks. The C channel type may not develop on bedrock or higher gradient reaches, in this case a Bc channel type that has balanced runs and pools and is not incised can develop.

On the McCain site, the existing stream channel waivers in between the F, C and Bc stream types. All of these stream types can be stable if their banks were allowed to re-vegetate with woody growth. A simple fencing of the stream channel with reforestation would produce a significant improvement in the condition of this stream channel. However, because long sections of this channel have been thrown up against the valley walls, full stabilization would remain elusive. As a consequence, the preferred stable condition of this stream would be a mix of C and Bc stream channel types, relocated away from the valley walls.

4.4.3 Stability Assessment

From an overall site perspective, a number of factors have contributed to the degradation of the project reach. Certain sources of disturbance have occurred historically while others are more recent and ongoing. Historic aerial photography dating to 1937 shows that both the site and the watershed have undergone relatively minor changes in land use over the last 68 years. Therefore, instability created by logging within the watershed or the initial clearing of the site has most likely moved through the stream network and may not be causing

significant adjustments in channel geomorphology at the present time. In addition, decreases in the base elevation of Back Creek in response to historical changes in land use or the installation of dams and culverts, may have influenced or be influencing channel morphology of UTBC. However, it is probable that vertical grade control exists between the location of the site and the confluence of UTBC and Back Creek that would prevent a headcut from advancing upstream to the site.

The most significant factors contributing to stream degradation on site, both in the past and present, are the impacts associated with cattle access to the stream and the absence of riparian and bank vegetation. The resulting bank instability has allowed a majority of the project stream to incise, overwiden and straighten to varying degrees and other stream sections to experience overwidening and possibly meander migration. The presence of shallow bedrock contacts on site has prevented the stream from incising further.

To better understand the existing and possible future condition of the project stream, qualitative stability assessments of distinct stream sections were developed based on both the dimensionless ratios (i.e., entrenchment ratio, bank height ratio) calculated from the cross-section data and visual observations.

Section 1 from Station 10+00 to ~14+90 is a transitioning reach. This Type B4c reach is the steepest and most entrenched section of the project stream with a bank height ratio of 1.21, entrenchment ratio of 1.76 and a slope of 0.011. Past disturbance of the stream caused this section to incise to bedrock elevation, overwiden and straighten. At the present time, this section has begun to form a Type C channel within the older, overwidened channel. The overall rate and extent of bank failure for the reach has declined and bar formation is active in a few locations where a meander planform is developing. Bank erosion potential is high in localized areas of meander formation (e.g., the location of XS2), but sediment input from this section is expected to be relatively low. Section 1 also experiences the least disturbance due to cattle access. A combination of the high left bank heights with the proximity of the hill slope to the right bank greatly reduce the amount of physical damage directly caused by the cattle due to hoof shear and trampling. In addition, approximately 145 feet of the upper portion of Section 1 is fenced out of the pasture area.

Towards the downstream end of Section 1, the stream valley widens, channel entrenchment decreases and water surface slope decreases. In contrast to Section 1, the stream in Section 2 is heavily impacted by cattle access and exhibits large variations in width and degree of bank failure, resulting in high sediment input to the stream. In general, Section 2 from Station ~14+90 to 20+05 is experiencing both aggradation and widening. Historically, the channel was probably a Type C4, or possibly a Type C5 at the higher base elevation, that downcut to become slightly entrenched, but not to a sufficient degree to classify as a Type G or Type F stream, and is now becoming significantly wider. The large amount of sediment contributed by the eroding banks is causing channel aggradation that only exacerbates the need for the hydraulically inefficient, overwidened channel to increase bankfull width.

It is important to consider this process of channel evolution where downcutting, widening and aggrading has occurred when evaluating the bed material size distribution of the existing degraded channel in both Sections 1 and 2. The large amount of cobble and boulder-sized material is predominantly due to materials already present in the soil column and weathered bedrock becoming exposed and worked into the bed of the active channel. The presence of these larger size classes is not an indication of the bankfull sediment transport capacity of the existing stream.

Section 3 from Station 20+05 to \sim 34+45 is significantly different from Sections 1 and 2 in that the channel narrows considerably and retains some original meander pattern. The bank height ratio decreases to 1.0 as the stream approaches the location of XS3. Section 3 is widening to a greater degree at the upstream end and experiencing only minor degradation. The downstream reach of Section 3 is only moderately unstable with almost no bed degradation, near vertical outside meander banks and inside meander banks that appear to be aggrading. This reach may be experiencing a slow meander migration as a result of the outside meander

banks being destabilized by lack of vegetation. This lower reach of Section 3 also exhibits relatively minor riffle and pool morphology and low water surface slope.

Cross sections 3 and 4 were classified as Type E5 and Type C5, respectively. This section may have been a stable Type E5 that is undergoing moderate bank failure and will stabilize as a Type C5 stream. At the present time, Section 3 seems to be undergoing the least amount of erosion and change in dimension, plan and profile of all the sections of the project stream.

4.5 Constraints

The presence of conditions or characteristics that have the potential to hinder restoration activities on the project site was evaluated. The evaluation focused primarily on the presence of hazardous materials, utilities and restrictive easements, rare/threatened/endangered species (RTE) or critical habitats, cultural resources, and the potential for hydrologic trespass. Existing information regarding project site constraints was acquired and reviewed. In addition, any site conditions that have the potential to restrict the restoration design and implementation were documented during the field investigation. Table 2 summarizes the identified constraints that may hinder the implementation of site restoration activities.

4.5.1 Hazardous Materials

The presence or likely presence of hazardous substances on the subject property and surrounding area under conditions that indicate a past, present or potential release into the ground, groundwater, or surface water was evaluated. The evaluation included a review of public record environmental database information and a visual site inspection.

A report meeting ASTM E1527-00 Standards for records search requirements was obtained summarizing existing federal and state database information regarding known environmental conditions for the subject property and surrounding area. No conditions of environmental concern were identified on the McCain Property or within the specified search radii. The visual site inspection was conducted in April 2003, and there were no potential environmental concerns to the project site or hazardous materials identified. The findings were documented on an Environmental Screening Inspection Form with corresponding photographs.

4.5.2 Utilities and Easements

KCI obtained copies of the property deed dating back to 1936 from the Randolph County Tax Office in April 2003 (Table 3). A power line easement transects the subject property in a southwest-northeast orientation, crossing UTBC at Station 19+70. The documentation for the power line easement was not found in the records at the Randolph County Tax Office. KCI determined that Randolph Electric is the power company that owns the easement (Contact: Ron Gunnell at (336) 625-0981 ext. 342).

Trees will be planted outside of the utility easement. A fall zone will, by default, extend to the edge of the utility easement. The power company will likely retain the rights to maintain "dangerous" trees immediately adjacent to the utility easement, following coordination with the holder of the conservation easement.

There will be no management agreement with the power company. The utility easement will be excluded from the conservation easement for the McCain Mitigation Site.

4.5.3 Hydrologic Trespass

The proposed project reach is entirely contained within the McCain property. The restoration of the project reach is not anticipated to produce hydrologic trespass conditions on any adjacent properties.

Fatal Flaw/Constraint	Nature of Constraint	Proposed Resolution		
Current Land Use (specify)	Livestock grazing, grain			
	agriculture, forest			
Adjacent Property Land Use	Forest, agriculture, low-density			
	residential development			
Landowner Concerns	Cattle access to water	Incorporate stable cattle stream		
		crossings into proposed design		
		to allow access to water and		
		pasture		
Deed Restrictions/Easements	Utility easement crosses project	Exclude utility easement from		
	site	the conservation easement.		
Project contractibility/access	Steep wooded hill slopes around	Access along utility easement.		
	project site	Verify whether improvements		
		can be made within the		
		easement (overhead).		
Utilities	Overhead power lines cross	Preserve access to utility		
	project site	easement for utility maintenance		
		needs		
Structures	N/A			
Cultural	SHPO Review – No occurrences			
(historical/archaeological)	(Appendix A).			
Rare, Threatened, and	Natural Heritage Program			
Endangered Species	Findings Letter (Appendix B)			
	indicated no record of			
	occurrences within one-mile			
	radius of the project site.			
Natural Features (soils, bedrock)	Bedrock outcrops in streambed	Accommodate bedrock presence		
	and banks	into proposed design		
FEMA Regulated Area	Project area within Zone \overline{C} (area			
	of minimal flooding, with no			
	detailed modeling required)			

Table 2.	Summary	of Design	Constraints
I able 2.	Summary	or Design	Constraints

 Table 3. Property Ownership History

Book	Page	Grantee (buyer)	Grantor (seller)	Date
813	234	Terry W. and Sigrid Nissen	Glenn M. and Mary E. Surratt	10/2/62
		McCain		
584	556	Glenn M. and Mary E. Surratt	Edgar G. and Odelia C. Lineberry	9/19/55
584	555	Edgar G. and Odelia C. Lineberry	T.R. and Kathleen Lineberry	9/17/55
276	259	T.R. Lineberry	Edgar G. Lineberry	3/14/36

5.0 **REFERENCE REACH ANALYSIS**

A reference reach is a channel with a stable dimension, pattern, and profile within the particular valley morphology. The reference reach is used to develop dimensionless morphological ratios (based on bankfull stage) that can be extrapolated to disturbed/unstable streams to restore a stream of the same type and disposition as the reference stream (Rosgen, 1998). The selection criteria included a stable reach occurring under similar hydrophysiographic, landform, and watershed land use conditions.

The project site occurs in rolling to hilly terrain of the Carolina Slate Belt ecoregion of the Piedmont physiographic province. The project stream runs through a gently sloping valley (average slope of approximately 0.8%) with alternating toe slopes. The project watershed is a small (0.88 square miles), primarily forested watershed with a small percentage of agriculture, pasture, and rural, low-density residential land uses. A reference reach with similar site and watershed conditions was desired.

It was determined that the restored stream will contain sections of two Rosgen stream types – "C3" and "C4." The NCDOT reference reach database was used to select potential reference reaches with similar stream type and slope. The database did not contain any Rosgen "C3" type steams in the piedmont physiographic province, however four potential "C4" reference reaches were visited to determine their use for this project. The reaches are listed below:

- UT to South Fork Cane Creek, Chatham County
- Morgan Creek, Orange County
- Spencer Branch, Montgomery County
- Richland Creek, Moore County

Richland Creek was selected as a reference reach for the McCain Site. In addition, a second suitable reference reach site was located on the project stream (UT to Back Creek), immediately upstream of the project site. Each reference reach is described in Appendix E with the location, description, photographs, and surveyed data.

6.0 **RESTORATION DESIGN**

The restoration design of the Un-named Tributary to Back Creek (UTBC) is based on a Priority Level 2 approach, as described in "A Geomorphological Approach to Restoration of Incised Rivers", (Rosgen, 1997). For clarity and convenience, definitions of the four restoration priorities are provided in Table 4.

6.1 Stream

The design proposes constructing 2,445 linear feet of meandering channel. The restoration will establish a bankfull channel with a new floodplain, a channel bed at its existing level in an existing gravel layer, and the cross section dimensions necessary to provide stable flow maintenance and sediment transport. The design bankfull stage will equal the floodplain elevation in the new channel (bank height ratio = 1.0). The proposed stream dimension, pattern, and profile will be based on the detailed morphological criteria and hydraulic geometry relationships developed from the reference stream, see Table 5. The establishment of a stable bedform (i.e., riffle-pool sequence, pool spacing) will be addressed in the profiling of the design channel. Refer to Figures 7 through 20 for the proposed channel dimension, pattern and profile.

In-stream structures will be incorporated to reduce the burden of energy dissipation on the channel geometry. J-Vanes (Figure 14: Details) will be used to stabilize the restored channel. These structures are designed to

reduce bank erosion and the influence of secondary circulation in the near-bank region of stream bends. The structures further promote efficient sediment transport and produce/enhance in-stream habitat. Coir fiber matting will be used to provide temporary stabilization on the newly graded streambanks. The confluence of tributaries with the restored stream will be stabilized with grade control structures and step sequences where necessary to match the proposed grade of the restored main channel. Excavated materials from the design channel will be used to partially backfill the abandoned channel sections.

The restoration project will also include other non-stream related components:

- Cattle exclusion fencing will be installed along the outer boundary of the restored riparian buffers and a permanent conservation easement will be recorded to protect the site in perpetuity.
- A gate will be provided in the cattle-exclusion fencing and a stabilized stream crossing provided for machinery access to the utility easement.
- Two stabilized stream crossings will be installed to provide cattle and machinery access to isolated pasture areas. Rock fords, fenced on either side to exclude cattle from further accessing the waterway, are recommended measures for these crossings.
- Offline watering devices will be installed at a two locations.

6.2 Riparian Buffers

Native woody and herbaceous species will be used to establish fifty (50) foot wide riparian buffers on both sides of the restored reach. Four hundred thirty-six (436) trees per acre (based on an average 10' x 10' spacing) will be planted to achieve a mature survivability of three hundred twenty (320) trees per acre in the riparian zone (DENR, 2001). Plant placement and groupings will be randomized during installation in order to develop a more naturalized appearance in the buffer. Woody vegetation planting will be conducted during dormancy.

Tree and shrub species to be planted may consist of the following:

<u>Trees</u> American sycamore (*Platanus occidentalis*) Tulip poplar (*Liriodendron tulipifera*) Green ash (*Fraxinus pennsylvanica*) River birch (*Betula nigra*) Cherrybark oak (*Quercus pagoda*) Willow oak (*Quercus phellos*) Water oak (*Quercus nigra*)

Herbaceous vegetation within the buffer shall consist of a native grass mix that may include: big bluestem (*Andropogon gerardii*), purple love grass (*Eragrostis spectabilis*), deertongue (*Panicum clandestinum*), gama grass (*Tripsacum dactyloides*), orchardgrass (*Dactylis glomerata*), river oats (*Chasmanthium latifolium*), and Virginia wildrye (*Elymus virginicus*). Rye grain (*Secale cereale*) or brown top millet (*Pennisetum glaucum*) will be used for temporary stabilization, depending upon the construction schedule.

On the restored stream banks, live stakes will be used in conjunction with the native herbaceous seed mix to provide natural stabilization. Appropriate species identified for live staking include elderberry (*Sambucus canadensis*), silky willow (*Salix sericea*), silky dogwood (*Cornus amomum*), and black willow (*Salix nigra*).

Description	Methods	Advantages	Disadvantages		
<u>Priority 1</u> Convert G and/or F stream types to C or E at previous elevation with floodplain.	Re-establish channel on previous floodplain using relic channel or construction of new bankfull discharge channel. Design new channel for dimension, pattern, and profile characteristic of stable form. Fill in existing incised channel or with discontinuous oxbow lakes level with new floodplain elevation.	Re-establishment of floodplain and stable channel: 1) reduces bank height and streambank erosion, 2) reduces land loss, 3) raises water table, 4) decreases sediment, 5) improves aquatic and terrestrial habitats, 6) improves land productivity, and 7) improves aesthetics.	 Floodplain re- establishment could cause flood damage to urban, agricultural, and industrial development. Downstream end of project could require grade control from new to previous channel to prevent head- cutting. 		
Priority 2 Convert F and/or G stream types to C or E. Re-establishment of floodplain at existing level or higher, but not at original level.	If belt width provides for the minimum meander width ratio for C or E stream types, construct channel in bed of existing channel, convert existing bed to new floodplain. If belt width is too narrow, excavate streambank walls. End-haul material or place in streambed to raise bed elevation and create new floodplain in the deposition.	 Decreases bank height and streambank erosion, Allows for riparian vegetation to help stabilize banks, Establishes floodplain to help take stress off of channel during flood, Improves aquatic habitat, Prevents wide-scale flooding of original land surface, Reduces sediment, Downstream grade transition for grade control is easier. 	 Does not raise water table back to previous elevation. Shear stress and velocity higher during flood due to narrower floodplain. Upper banks need to be sloped and stabilized to reduce erosion during flood. 		
Priority 3 Convert to a new stream type without an active floodplain, but containing a floodprone area. Convert G to B stream type, or F to Bc.	Excavation of channel to change stream type involves establishing proper dimension, pattern, and profile. To convert a G to B stream involves an increase in width/depth and entrenchment ratio, shaping upper slopes and stabilizing both bed and banks. A conversion from F to Bc stream type involves a decrease in width/depth ratio and an increase in entrenchment ratio.	 Reduces the amount of land needed to return the river to a stable form. Developments next to river need not be relocated due to flooding potential. Decreases flood stage for same magnitude flood. Improves aquatic habitat. 	 High cost of materials for bed and streambank stabilization. Does not create the diversity of aquatic habitat. Does not raise water table to previous levels. 		
Priority 4 Stabilize channel in place.	A long list of stabilization materials and methods have been used to decrease streambed and streambank erosion, including concrete, gabions, boulders, and bioengineering methods.	 Excavation volumes are reduced. Land needed for restoration is minimal. 	 High cost for stabilization. High risk due to excessive shear stress and velocity. Limited aquatic habitat depending on nature of stabilization methods used. 		

 Table 4. Priority Levels of Incised River Restoration.

Source: Rosgen, 1997, "A Geomorphological Approach to Restoration of Incised Rivers".

Table 5. Morphological Design Criteria

McCain Property		Design Ranges	Upstream Reach	Middle Reach	Transition Reach	Lower Reach	Average Values			
	McCain Property Stream Restoration				or	10+00	12+85	20+21	25+51	values
	Stream Restoration			Target	to	to	to	to		
					Values	12+85	20+21	25+51	34+45	
			Stream Type		B3c/C4					
	*		Wbkf	(ft)	18.8	18	24	20	18	20
			Dbkf	(ft)	1.1	1.367	1.042	1.28	1.417	1.277
	*		Abkf	(sq ft)	21.0	24.6	25	25.6	25.5	25.18
	*		N bkf /D bkf (W/D)	(ft/ft)	17.0	13.17	23.04	15.63	12.71	16.14
Γ			Dmax	(ft)	2.0	2	1.3	1.7	2	1.75
٩V			W fpa	(ft)						
ž			W fpa /W bkf (ER)	(ft/ft)						
SU	*		Save	(ft/ft)	0.0060	0.006767	0.010447	0.007965	0.006788	0.005246
	*		K		1.5					1.254
	*		D 50	(mm)	26.0					
			D 84	(mm)	48.0					
			Vbkf	(ft/sec)	4.8	3.865	3.949	3.918	3.949	3.920
	*		Q bkf	(cfs)	100.0	95	99	100	101	
			Wbkf	(ft)	18.8	18	24	20	18	20
			Dbkf	(ft)	1.1	1.367	1.042	1.28	1.417	1.277
			A bkf	(sq ft)	21.0	24.6	25	25.6	25.5	25.2
			Dmax	(ft)	2.0	2	1.3	1.7	2	1.75
			Wfpa	(ft)						
	RIFFLE		Dtob	(ft)						
_			Vbkf	(ft/sec)	4.8	3.865	3.949	3.918	3.949	3.920
N			Q bkf	(cfs)	100.0	95	99	100	101	
IS I			Wbkf/Dbkf (W/D)	(ft/ft)	17.0	13.17	23.04	15.63	12.71	16.14
Ē		SOI	Dmax/Dbkf	(ft/ft)	1.6	1.463	1.248	1.328	1.411	1.363
N		RAT	Dtob/Dmax	(ft/ft)						
1-			Wfpa/Wbkf (ER)	(ft/ft)						
			Wpool	(ft)	28.2	20	24	20	20	21
			Dpool	(ft)	2.2-2.75	3	2.33	2.8	3.33	2.87
	Ы		A pool	(sq ft)	62-78	39.5	35.88	36.67	41.64	38.42
	6	SC	Wpool/Wbkf	(ft/ft)	1.5	1.111	1.000	1.000	1.111	1.056
		Ĕ	D pool /D bkf	(ft/ft)	2.0-2.5	2.195	2.236	2.188	2.350	2.242
		R/	Apool/Abkf	(ft2/ft2)	2.9-3.6	1.606	1.435	1.432	1.633	1.527
			Lm	(ft)	130-280	190.62	294.34	212	236.34	233.325
Z			Rc	(ft)	30-60	30-35	50-60	35-40	35-55	30-60
ER			Wblt	(ft)	100-250					
IE			K		1.45	1.165	1.201	1.218	1.232	1.254
₹		so	Lm/Wbkf	(ft/ft)	10 to 14	10.6	12.3	10.6	13.1	11.6
-		Ĩ₽	Rc/Wbkf	(ft/ft)	1.6-3.2	1.7 to 1.9	2.1 to 2.5	1.8 to 2	1.9 to 3.1	2.16
		R,	Wblt/Wbkf	(ft/ft)	5-13		-			
			Sval	(ft/ft)	0.0080	0.0061116	0.0100368	0.007699	0.0063411	0.0065785
			Save	(ft/ft)	0.0060	0.005246	0.008357	0.006321	0.005147	0.005246
			Sriffle	(ft/ft)	.01014	0.006767	0.010447	0.007965	0.006768	
1			Spool	(ft/ft)		0.002899	0.005208	0.004226	0.002757	
Ш			Lriffle	(ft)	28-75	57.83	88.48	59.4	66.57	68.8
Ē			Lpool	(ft)	56-94	37.48	58.7	46.59	51.6	50
L N N			P to P	(ft)	56-188	95.31	14/.17	106	118.17	116.66
٩			Sriffle/Save	(ft/ft)	2.4-2.8	1.290	1.250	1.260	1.315	1.279
1		SO	Spool/Save	(ft/ft)		0.553	0.623	0.669	0.536	0.595
1		AT	Lriffle/Wbkf	(ft/ft)	1.5-4.0	3.213	3.687	2.970	3.698	3.392
1		2	Lpool/Wbkf	(ft/ft)	3-5	2.082	2.446	2.330	2.867	2.431
1			P to P/Wbkf	(ft/ft)	5-7	5.295	6.132	5.300	6.565	5.823

Station

Figure 8. Constrictor Cross Section at Station 12+86 to 13+16.

Figure 9. Proposed Cross-sections: Sta. 10+00 to12+86.

Figure 10. Proposed Cross-sections: Sta. 12+86 to 20+22.

Figure 11. Proposed Cross-sections: Sta. 20+22 to 25+52.

Figure 12. Proposed Cross-sections: Sta. 25+52 to 34+46.

STATE OF NORTH CAROLINA ECOSYSTEM ENHANCEMENT PROGRAM

RANDOLPH COUNTY

LOCATION: McCAIN PROPERTY UN-NAMED TRIBUTARY TO BACK CREEK SOPHIA, NORTH CAROLINA

TYPE OF WORK: STREAM RESTORATION

PROJECT: 020594001

TE	GRAPHIC SCALES PROJECT LENGTH -40 -20 0 40 80 9 PLANS STREAM RESTORATION LENGTH		Prepared in t KCI A of Nort SUITE 220 LANDI ENGINEERS • PL	he Office of: ssociates h Carolina, P.A. MARK CENTER II, 460ISIX FORKS RD., RALEIGH NC ANNERS • ECOLOGISTS	PROJECT ENGINEER	Prepared for:
SIA	-40 -20 0 40 80 PROFILE (HORIZONTAL) -4 -2 0 4 8 PROFILE (VERTICAL)		PROJECT START DATE:	PROJECT ENGINEER	<u>P.E.</u>	

STATE	STATE PROJECT NUMBER	SHEET NO.	TOTAL SHEBT
N.C	020594001	1	8
	·		
			<u> </u>
			———
SYM.	DESCRIPTION	DATE	APPROVED
	REVISIONS		

SEMI-FINAL DESIGN PLANS

DATE	McCAIN PROPERTY - UT TO BACK CREEK					STATION 10+00.00 TO STATION 34+45
		ASSOCIATES OF NC	ANFRS • SCIENTISTS	Honeretern		
					SYM. DESCRIPTION	REVISIONS
					DATE APPROVED	

7.0 SEDIMENT TRANSPORT ANALYSIS

A stable channel is able to move the sediment supplied by its watershed without aggrading or degrading. This ability is evaluated through two parameters: competency and capacity. Competency is the channel's ability to move particles of a certain size, expressed as units of Pascals (Pa) or lbs/ft^2 . Capacity is the channel's ability to move a specific volume of sediment (sediment discharge). Sediment discharge is the amount of sediment moving through a cross section over a specified period of time, expressed in dimensionless parameters or as mass or weight units of kg/sec or lbs/sec.

7.1 Competency

Whenever there is any stream flow, there will always be sediment movement. However, there is a threshold level of bedload sediment movement that will result in a noticeable change in the channel bed. The flow associated with this threshold movement is the reference condition that all sediment transport models are based upon. In natural streambeds there are particles of a wide range of sizes. At low, but significant flow levels, only the smallest particles will be moving, with the larger particles resisting the flow of the stream. This is the condition of partial sediment transport. As the stream flow increases, eventually every particle on the streambed will show threshold movement, this is the condition of full sediment transport.

Some streams will routinely reach full sediment transport, such as sand streams, and models such as Ackers & White (1973) are used for these conditions. Some streams will rarely move even the median size particle on the bed (D_{50}), such as cobble-boulder streams, and models such as Andrews (1983, 1994) are used for these conditions. There is a wide range of sand-gravel-cobble streams that have the flow conditions necessary to significantly move particles greater than the D_{50} , but do not reach the full sediment transport condition. This condition is present at the stream channel on the McCain property, and the model used was Wilcock-Crowe (2003), which is actually a "sediment capacity" model (see next section). However, a capacity model must contain an entrainment predictor.

Entrainment is the condition that initiates the movement of a selected particle size in the presence of a mix grade channel bed. If the largest particle that moves during a bankfull event can be identified, then the flow conditions that produced this movement can be determined and this flow condition (the channel competency) is used in the design of the restored stream channel. The preferred method of determining this particle size and flow condition is by direct measurement. However, to stand in a stream channel at bankfull flow with both a flow meter and a sediment sampler is both difficult and extremely unlikely in remote locations. However, a rain gage and stream gages can be installed to measure the stream channel's response to rain events and, in the channel bed, scour chains installed to measure the depth of scour during these events. The bed material above the scour chain can be collected and sieved to determine the material sizes in transport for a known recorded flow event.

The indirect scour chain method was attempted at the McCain site. In addition, the channel was sampled by the pebble count method at several sites for trend analysis and at one scour chain site, the surface and subsurface sediment samples were sieved to compare to the scour chain data. However, the UTBC stream bed has been compacted by cattle and after months of observations, the scour chains never recorded a sediment transport event. Another four sites were sampled for surface and subsurface sediment gradation, including the second scour chain site. Two bar locations were also sampled with the intent of conducting detailed analysis of the sediment data to determine if a design shear stress could be calculated from the Wilcock-Crowe (2003) models.

There are two ways to model streams; first to consider only the largest particle observed in motion (Andrews, 1983) and second to consider all of the bed material observed to be in motion (Andrews, 1994). If the stream

channel has a bed of sediment in balance with its flow, then there should be a natural armour layer on the surface, with the subsurface an indication on the annual bedload. An attempt to find a sediment transport balance between the entire surface and subsurface samples was futile. The surface and subsurface had been mixed by the cattle too much to have this balance condition represented in the samples. There was also an attempt to determine if the subsurface could predict the surface D_{50} (and vice versa), which produced encouraging results at two locations. The largest particles found in the surface and subsurface samples were compared to the gradation of the surface samples. This did not produce useful results as the mixing by the cattle had driven large particles into the subsurface (and small particles into the surface that washed away).

The assumption that the subsurface could be an indicator of annual sediment transport was not viable, however a second assumption of balanced streams is that a point bar sample at the so called "1/3, 1/3" location could be an indicator of annual sediment transport. The upstream bar proved to be the wrong kind and the downstream point bar at scour chain site #2 showed a good result when compared to the surface sample at that location. This result compared well to the best of the subsurface modeling. The location of this sediment sample was also well placed for use in the stream restoration design. Scour chain site #2 was well away from the channery deposit at the top end of the site. The surface material in the channel could then represent the gravel layer where the relocated stream channel would be placed.

This model produced an average shear stress condition that would be used in stream design to move the largest particles expected to be in the sediment transport over the expected gradation of the stream channel. This shear stress can be used for the design riffle cross-sections and channel gradient in the various project reaches using the equation:

 $\tau = \gamma Rs$

Where: $\tau = \text{shear stress (lbs/ft}^2)$ $\gamma = \text{specific gravity of water (62.4 lbs/ft}^3)$ R = hydraulic radius (ft)s = average water slope (ft/ft)

The target shear stress value (converted to a shear-velocity) for the design cross-sections is $u^* = 0.156$ m/s. Supporting sediment transport calculations and rating curves are provided in Appendix F.

7.2 Capacity

A sediment transport capacity analysis was not conducted because the reach on the McCain property is a transport reach. Transport reaches are supply limited and will flush their beds at the end of storms. A realistic sediment transport model cannot be based on a flushed channel bed. The flushed bed cannot predict the movement of the fine materials that make up the bulk of the bedload sediment transport.

8.0 FLOODING ANALYSIS

The Un-named Tributary to Back Creek (UTBC) in Randolph County is not located in a Federal Emergency Management Agency (FEMA) Detailed Flood Study Zone. It is the intent of the restoration design to maintain the 100-year flood elevation at or below the current stages following restoration.

The conversion of an existing, incised stream system to a more open and natural meandering stream will normally reduce flood stages along the project reach. At the downstream end of the project, the stream

encounters the floodplain of Back Creek approximately a mile above the Back Creek Lake reservoir. It is not likely that the existing UTBC has any effect on the 100-yr flood stage at this location.

9.0 MONITORING AND EVALUATION

Monitoring shall consist of the collection and analysis of stream stability and riparian/stream bank vegetation survivability data to support the evaluation of the project in meeting established restoration objectives. Specifically, project success will be assessed utilizing measurements of stream dimension, pattern, and profile, site photographs, and vegetation sampling.

9.1 Duration

The first scheduled monitoring will be conducted at the end of the first full growing following project completion. Monitoring shall subsequently be conducted annually for a total period of five (5) years.

9.2 Reporting

Monitoring reports will be prepared and submitted after all monitoring tasks for each monitoring event are completed. Each report will provide the new monitoring data and compare the new data against previous findings. Data tables, cross sections, profiles, photographs and other graphics will be included in the report as necessary. Each report will include a discussion of any significant deviations from the as-built survey and previous annual measurements, as well as evaluations as to whether the changes indicate a stabilizing or destabilizing condition.

9.3 Stream Stability

The purpose of monitoring is to evaluate the stability of the restored stream. Following the procedures established in the USDA Forest Service Manual, *Stream Channel Reference Sites* (Harrelson, et.al, 1994) and the methodologies utilized in the Rosgen stream assessment and classification system (Rosgen, 1994 and 1996), data collected will consist of detailed dimension and pattern measurements, a longitudinal profile, and bed materials sampling. Width/depth ratio, entrenchment ratio, low bank height ratio, sinuosity, meander width ratio, radius of curvature (on newly constructed meanders during 1st year monitoring only), pool-to-pool spacing as well as the average, riffle and pool water slopes will be calculated from the collected data. Pebble count data will be plotted by size distribution in order to assess the D50 and D84 size class.

9.3.1 Dimension

Four permanent cross-sections, two riffle and two pool, will be established and used to evaluate stream dimension. At least one riffle and one pool cross-section will be located within the area also surveyed as part of the longitudinal profile. Permanent monuments will be established by either conventional survey or GPS. The cross-section surveys shall provide a detailed measurement of the stream and banks, to include points on the adjacent floodplain, at the top of bank, bankfull, at all breaks in slope, the edge of water, and thalweg. Subsequently, width/depth ratios, entrenchment ratios and bank height ratios will be calculated for each cross-section.

Cross-section measurements should show little change from the as-built cross-sections. If changes do occur, they will be evaluated to determine whether they are minor adjustments associated with settling and increased stability or whether they indicate movement toward an unstable condition.
9.3.2 Pattern

Measurements associated with the restored channel pattern will include belt width, meander length, and radius of curvature (on newly constructed meanders only for the first year). Subsequently, sinuosity, meander width ratio and radius of curvature and meander length/bankfull width ratios will be calculated.

9.3.3 Profile

A longitudinal profile of a representative reach of the restored channel will be surveyed. The profile will extend a minimum of 20 bankfull widths. Measurements will include slopes (average, pool, riffle), as well as calculations of pool-to-pool spacing. Annual measurements should indicate stable bedform features with little change from the as-built survey. The pools should maintain their depth with lower water surface slopes, while the riffles should remain shallower and steeper.

9.3.4 Bed Materials

Pebble counts will be conducted at each riffle cross-section, as well as across the overall study reach (based upon percentage of riffles and pools) for the purpose of classification and to evaluate sediment transport.

9.4 Photograph Reference Points

Photograph reference points (PRP's) will be established to assist in characterizing the site and to allow qualitative evaluation of the site conditions. The location of each photo point will be permanently marked in the field and the bearing/orientation documented to allow for repeated use.

9.4.1 Cross-section Photograph Reference Points

Four (4) photographs will be taken at each permanent cross section, as follows: 1) from the left bank permanent monument/pin showing the right bank, 2) from the right bank permanent monument/pin showing the left bank, 3) from downstream of the cross-section looking upstream, and 4) from upstream of the cross-section looking downstream. The survey tape will be centered in each photograph and the water line will be located near the lower edge. Effort will be made to consistently show the same area in each photograph.

9.4.2 Longitudinal Photograph Reference Points

Ten (10) permanent points will be established longitudinally throughout the project site to allow further photo-documentation of the restored stream channel condition.

9.4.3 Additional Photograph Locations

Additional PRP's will be located, as needed, to document the condition of specific in-stream structures such as J-vanes and cross vanes, as well as infrastructure associated with the stream such as utility and road crossings.

9.5 Bank and Riparian Vegetation Monitoring

Bank and Riparian Vegetation monitoring shall follow the EEP Vegetation Monitoring Protocol, which will be accepted and approved before construction of this project begins.

REFERENCES

- Ackers, P. and W.R. White. 1973. Sediment transport: new approach and analysis. Journal of the Hydraulics Division, ASCE, Volume 99, Number HY11, pp. 2041-2060.
- Andrews, E.D. (1983) "Entrainment of Gravel from Natural Sorted Riverbed Material," Geological Society of America Bulletin 94, 1225-1231.
- Andrews, E.D. (1994) "Marginal Bedload Transport in a Gravel-Bed Stream Channel, Sagehen Creek, California," Water Resources Research, 30 () 2241-2250.
- Doll, B.A., D.E. Wise-Frederick, C.M. Buckner, S.D. Wilkerson, W.A. Harman, R.E. Smith, and J. Spooner. 2002. Hydraulic Geometry Relationships for Urban Streams throughout the Piedmont of North Carolina. JAWRA, Volume 38, Number 3, pp. 641-651.
- Harrelson, C.C., C.L. Rawlins, and J.P. Potyondy. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. General Technical Report RM-245. USDA Forest Service, Rocky Mountain Forest and Range Experiment Station, Fort Collins, CO.
- NCDENR. 2001. "Guidelines for Riparian Buffer Restoration." Division of Water Quality, Wetlands Restoration Program, Raleigh, NC.
- NCDENR. 2001. "Interim, Internal Technical Guide: Benthic Macroinvertebrate Monitoring Protocols for Compensatory Stream Restoration Projects." Division of Water Quality, 401 Wetlands Unit, Raleigh, NC.
- NCDENR. "Water Quality Stream Classification for Streams in North Carolina." Water Quality Section (http://h2o.enr.state.nc.us/bims/reports/basinsandwaterbodies). September 2002.
- NCGS. 1985. Geologic Map of North Carolina
- Rosgen, D.L. 1994. A classification of natural rivers. Catena 22: 169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Wildland Hydrology Books, Pagosa Springs, CO.
- Rosgen, D.L. 1997. A geomorphological approach to restoration of incised rivers. In: Wang, S.S.Y., E.J. Langendoen, and F.D. Shields, Jr. (Eds.). Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. pp. 12-22.
- Rosgen, D.L. 1998. The Reference Reach a Blueprint for Natural Channel Design. Proceedings of the Wetland Engineering and River Restoration Conference, Denver, CO, ASCE.
- Rosgen, D.L. 2001. "Natural Channel Design Methodology (40 Steps)." Natural Channel Design and River Restoration Short Course, Pagosa Springs, CO October 2001.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd Approximation. North Carolina Natural Heritage Program, NCDEHNR, Division of Parks and Recreation. Raleigh, NC.
- Schlindwein, P.A. (2004) "Evolution of Piedmont Floodplains and Stream Channels: Implication for Urban Stream Restoration," *Proceeding of the World Water Resources Congress*, Salt Lake City, UT, EWRI/ASCE
- Simon, A. 1989. A model of channel response in distributed alluvial channels. Earth Surface Processes and Landforms. 14(1): 11-26.
- USDA. 1971. Soil Survey for Durham County, North Carolina. Natural Resource Conservation Service.
- Wilcock, P.R. and Crowe, J.C. (2003). "Surface-Based Transport Model for Mixed-Size Sediment", *Journal* of Hydraulic Engineering, ASCE, 129(2), pp 120-128.

Appendix A

SHPO Documentation

Review Form Potential Restoration Sites

	testeration sites
1. Applicant Information:	and the second for any later with the second training of the second
Preparer/Company KC	For North Carolina HEO
Address: 4601 Six Focks Rd. ste 220 Ruleigh	NC 27609
Phone/Fax/E-mail: 919-783-9214	
II. Site Information	
Wetland Restoration	quad on reverse; include I and 2 mile radius around site)
Stream Restoration	Applicant's Identification #
Other:	
Address: 2592 Lake Lucas Rd. Sophia, NO	27350
County: Randolph	Quad Name: Kandleman
III. Identification of Historic Properties:	
List sites by site number and Status: NR = National Register lis Eligibility; LID = Local Desi	ted; SL = Study List; DOE = Determination of gnation; UA = Unassessed
Ample also	
Archeology	Architecture
# of recorded sites in immediate area of site: $ ot \! arphi $	# of recorded sites within 1 mile radius
	φ
IV Additional Information or investigation peopled	NO and
No SLEWEY FEL, Drowided work win	PSE
_Survey 1 panks	Photo Reconnaissance
Testing of sites	Balloon Test
Recommended by or on: $(2500 + 126)$	Recornmended by or on: (Survey & Planning Branch)
(once of state Archaeology)	
V. Recommendations/Final Determination:	
Recommendations for additional work are shown abo	ove.
The proposed restoration site with of affect historic p	properties in the area of potential effect.
(/) Do AG. 00 50 0	
Under all all ally	4-26-05 Data

4-26-05 Date

Renee Gledhill-Earley, Environmental Review Coordinator

-

-

December 2001

Appendix B

Natural Heritage Program Findings Letter

1

North Carolina Department of Environment and Natural Resources Division of Parks and Recreation

Michael F. Easley, Governor

William G. Ross, Jr., Secretary

Philip K. McKnelly, Director

May 21, 2003

Ms. Kimberly A. Nimmer KCI Engineers Landmark Center I, Suite 200 4601 Six Forks Road Raleigh, NC 27609

Subject: Stream Restoration Site in Randolph County KCI Job #:1202084E

Dear Ms. Nimmer:

The Natural Heritage Program has no record of rare species, significant natural communities, or priority natural areas at the site nor within a mile of the project area. Although our maps do not show records of such natural heritage elements in the project area, it does not necessarily mean that they are not present. It may simply mean that the area has not been surveyed. The use of Natural Heritage Program data should not be substituted for actual field surveys, particularly if the project area contains suitable habitat for rare species, significant natural communities, or priority natural areas.

You may wish to check the Natural Heritage Program database website at <<u>www.ncsparks.net/nhp/search.html></u> for a listing of rare plants and animals and significant natural communities in the county and on the topographic quad map. Please do not hesitate to contact me at 919-715-8687 if you have questions or need further information.

Sincerely,

Hang E. Lofrand. p

Harry E. LeGrand, Jr., Zoologist Natural Heritage Program

HEL/hel

1015 Mail Service Center, Raleigh, North Carolina 27699-1615 Phone: 919-723-4181 Fax: 914-715-3085 Internet: www.ncsparks.net An Ease operation Affirmative Actor Employer - 514 Reported - 24 Post Consumer Paper

Major Group	Scientific Name	Common Name	State	Federal	State	Global
			Status	Status	Rank	Rank
Mammal	Condylura cristata	Star-nosed Mole	SC	NA	S2	G5T2Q
	pop1	– Coastal Plain				
		population				
Reptile	Crotalus horridus	Timber	SC	NA	S 3	G4
		Rattlesnake				
Amphibian	Hemidactylium	Four-toed	SC	NA	S 3	G5
	scutatum	salamander				
Fish	Notropis	Cape Fear	E	E	S1	G1
	Mekistocholas	Shiner			~~	<u><u> </u></u>
Mollusk	Alasmidonta undulata	Triangle Floater	Т	NA	S2	G4
Mollusk	Alasmidonta varicose	Brook Floater	E	FSC	S1	G3
Mollusk	Fusconaia masoni	Atlantic Pigtoe	E	FSC	S1	G2
Mollusk	Lampsilis cariosa	Yellow	E	FSC	S1	G3G4
Mollusk	Lampsilis radiata	Carolina	Т	NA	S 1?	G5T2O
Wondsk	conspicua	Fatmucket	1	1 1 1	51.	0312Q
Mollusk	Strophitus undulates	Squawfoot	Т	NA	S2S3	G5
Mollusk	Toxolasma pullus	Savannah	E	FSC	<u>S1</u>	G2
1110110011	r onoraonna pantao	Lilliput	-	1.00	~ 1	02
Mollusk	Villosa constricta	Notched	SC	NA	S 3	G3
		Rainbow				
Mollusk	Villosa delumbis	Eastern	SR	NA	S3	G4
		Creekshell				
Mollusk	Villosa vaughaniana	Carolina	Е	FSC	S2	G2
		Creekshell				
Crustacean	Cambarus catagius	Greensboro	SC	NA	S2	G3
		Burrowing				
		Crayfish				
Insect	Gomphus abbreviatus	Spine-crowned	SR	NA	S3?	G3G4
		Clubtail				
Vascular Plant	Amorpha schwerinii	Piedmont	SR-T	NA	S3	G3
		Indigo-bush		~	~~	GA GA
Vascular Plant	Aster georgianus	Georgia Aster	Т	C	S2	G2G3
Vascular Plant	Berberis canadensis	American Barberry	SR-T	NA	S2	G3
Vascular Plant	Cardamine dissecta	Dissected	SR-P	NΔ	\$2	G4?
v useular i failt	Cardanine dissecta	Toothwort	SIC I	1171	52	04.
Vascular Plant	Helianthus	Schweinitz's	E	Е	S2	G2
	schweinitzii	Sunflower				
Vascular Plant	Hexalectris spicata	Crested	SR-P	NA	S2	G5
		Coralroot				
Vascular Plant	Ruellia purshiana	Pursh's Wild-	SR-O	NA	S2	G3?
		petunia				
	I					

Rare, Threatened, and Endangered Species and Critical Habitats in Randolph County, NC NCDENR-Natural Heritage Program

Vascular Plant	Schoenoplectus	Canby's	SR-P	NA	S3	G3G4
	etuberculatus	Bulrush				
Natural	Basic Mesic Forest	NA	NA	NA	S2	G5T3
Community	(Piedmont Subtype)					
Natural	Basic Oak-Hickory	NA	NA	NA	S3	G4
Community	Forest					
Natural	Dry Oak-Hickory	NA	NA	NA	S4	G5
Community	Forest					
Natural	Dry-Mesic Oak-	NA	NA	NA	S5	G5
Community	Hickory Forest					
Natural	Floodplain Pool	NA	NA	NA	S2	G3?
Community						
Natural	Low Elevation Seep	NA	NA	NA	S 3	G4?
Community	_					
Natural	Mesic Mixed	NA	NA	NA	S4	G5T5
Community	Hardwood Forest					
	(Piedmont Subtype)					
Natural	Piedmont Monadnock	NA	NA	NA	S 4	G5
Community						
Natural	Piedmont/Coastal	NA	NA	NA	S2?	G4
Community	Plain Acidic Cliff					
Natural	Piedmont/Coastal	NA	NA	NA	S 3	G4?
Community	Plan Heath Bluff					
Natural	Piedmont/Low	NA	NA	NA	S5	G5
Community	Mountain Alluvial					
-	Forest					
Natural	Rocky Bar and Shore	NA	NA	NA	S5	G5
Community						
Natural	Upland Depression	NA	NA	NA	S2	G3
Community	Swamp Forest					
Natural	Upland Pool	NA	NA	NA	S 1	G1
Community						
Natural	Xeric Hardpan Forest	NA	NA	NA	S 3	G3G4
Community	_					

- <u>State Status:</u> SC Spec Special Concern
- Endangered Е-
- T Threatened
- Significantly Rare Throughout SR –
- -T –
- -P Peripheral
- -0-Other

Federal Status:

- Endangered E –
- FSC Federal "Species of Concern"
- C Candidate

State Rank:

- S1 Critically imperiled in North Carolina because of extreme rarity or otherwise very vulnerable to extirpation in the state.
- S2 Imperiled in North Carolina because of rarity or otherwise vulnerable to extirpation in the state.
- S3 Rare or uncommon in North Carolina.
- S4 Apparently secure in North Carolina, with many occurrences.
- S5 Demonstrably secure in North Carolina and essentially ineradicable under present conditions.
 - S? Unranked, or rank uncertain.

Global Rank:

- G1 Critically imperiled globally because of extreme rarity or otherwise very vulnerable to extinction throughout its range.
- G2 Imperiled globally because of rarity or otherwise vulnerable to extinction throughout its range.
- G3 Either very rare and local throughout its range, or found locally in a restricted area.
- G4 Apparently secure globally, although it may be quite rare in parts of its range (especially at the periphery).
- G5 Demonstrably secure globally, although it may be quite rare in parts of its range (especially at the periphery).
- G? Unranked, or rank uncertain.
 G_T_ Status of subspecies or variety; the G-rank refers to the species as a whole, the T-rank to the subspecies.

Appendix C

Project Site Existing Conditions Data

Photograph 1 – View of UTBC prior to entering project site, looking upstream from Station 10+00 across the McCain property boundary.

Photograph 2 – View looking upstream at top of project site. Logs in stream in upper right of photo mark station 10+00. Scour along the right bank is predominantly into weathered bedrock.

Photograph 3 – Weathered bedrock along right bank and in UTBC streambed (Station 10+20 to 10+35).

Photograph 4 – View downstream at Cross-section 1.

Photograph 5 - Barbed wire fence crossing stream that has caused a debris jam.

Photograph 6 – View downstream at Cross-section 2.

Photograph 7 – Undercut left bank at Cross-section 2, top of bank overhangs ~2.3 feet.

Photograph 8 – View looking downstream of confluence with small unnamed tributary, entering from lower right in photo (\sim Station 13+25 – 13+50).

Photograph 9 – View looking downstream below confluence of tributary with UTBC. Bedrock along right bank and in stream, steep bank above bedrock on right bank (Station 13+50 to 14+00).

Photograph 10 – View looking downstream, meander pattern of UTBC is visible in the lower right of the photo, moving to the left. Steep, eroding banks occur on the outside meander bank with bar formation on the inside bank.

Photograph 11 – Looking downstream at debris jam across UTBC channel, right bank undercut with exposed roots upstream of jam (Station ~15+50).

Photograph 12 – High-traffic cattle crossing, with boulders along the left bank and in the stream channel (Station ~16+15).

Photograph 13 – Boulder/cobble bar along steep right bank, cattle access in right foreground; small sod island with two small trees near left bank.

Photograph 14 – View downstream toward power line easement, upstream of bend to the right in UTBC.

Photograph 15 – Confluence of UT2 with UTBC along left bank (Station ~19+50). Note transverse boulder/cobble bar extending across channel upstream of confluence. Fence marking property boundary is visible along top of photo.

Photograph 16 – Headcut along Trib 2 at property boundary, approximately 50 feet upstream from confluence with UTBC.

9

Photograph 17 – View upstream from Station 20+25. Note large gravel and cobble bar along left bank. Steep right bank in foreground; further upstream right bank has been worn down from cattle access.

Photograph 18 – Cattle crossing at near Station 20+50. Cobbles and boulders in stream channel, possibly placed to help stabilize crossing. Banks flattened from cattle access, increasing channel width/depth ratio.

Photograph 19 – Ceramic drainage tile about four inches in diameter at base of right bank (Station ~21+00).

Photograph 20 –Sinkholes in right bank extending approximately 30 feet from top of bank, possibly associated with drainage tile (Station ~21+00).

Photograph 21 – Manmade cattle watering hole, set back approximately 40 feet from right bank (Station ~22+00).

Photograph 22 – View downstream, gravel and cobble bar with grass along left bank. Both banks are relatively steep, though the right bank has more hoof shear. Right floodplain extends approximately 20 feet back from the top of right bank to the toe of slope.

Photograph 23 – View downstream; right bank has significant erosion from cattle access. Large overhanging tree on left bank with roots exposed from undercutting.

Photograph 24 – Confluence of UT3 with UTBC along right bank, significant erosion due to cattle access.

Photograph 25 – Headcut along UT3, approximately 50 feet upstream of confluence with UTBC.

Photograph 26 – Concrete pipe along UT3, above headcut.

Photograph 27 – A portion of the flow in UT3 crosses a field towards the right bank of UTBC. The channel appears to be newly formed, either due to overbank flow or was excavated to redirect flow.

Photograph 28 – View downstream of fallen tree and large debris jam across UTBC.

Photograph 29 – View downstream of left bank bench and gravel bar, erosion of right bank from cattle access.

Photograph 30 – View downstream of channel constricted between large trees on each bank. Bank undercutting has left roots exposed.

Photograph 31 – High-traffic cattle crossing. Note meander bend downstream of cattle crossing, with large tree on each bank.

Photograph 32 – Bedrock in streambed at cattle crossing.

Photograph 33 – Sinkholes in riparian area approximately 30 feet from right bank of UTBC. Maximum depth is approximately two feet.

Photograph 34 – View downstream of series of debris jams. The disruption of flow has caused localized bank erosion and the formation of plunge pools. Fence line approximately 20 feet from left top of bank marks property boundary.

Photograph 35 – Downstream view. Left bank is nearly vertical; right bank is sloped back due to cattle access.

Photograph 36 – Downstream view at Cross-section 3, located at crossover point between two sharp meander bends. Near-vertical right bank and sloping left bank are an indication of down-valley meander migration.

Photograph 37 – Downstream view of Cross-section 4, located on meander with bed morphology that has been significantly disturbed. Channel flow has both run and pool characteristics.

Photograph 38 – Downstream view of UTBC. Unstable banks, undercutting around large tree on right bank has left roots exposed. Further downstream, a large uprooted tree on the right bank has fallen away from stream into riparian area.

Photograph 39 – Debris jam at downstream end of project, caused by barbed wire fence crossing stream at the property boundary.

Photograph 40 – Concrete slab crossing stream channel approximately 20 feet downstream of project boundary.

Photograph 41 – View upstream from right bank riparian area at downstream end of project. Overall stream pattern influenced by alternating toe slopes as the stream progresses down valley.

River Basin:			Lower Yadkin				- NE-	2 MAY	Const A Maria
Watershed:			UT to Back Creek	2		AMA STOR			
XS ID			XS-1 (Riffle)			The total	T		San the first
Drainage Are	ea (sq mi):		0.74				The state	Si Challe	A A HEAL
Date:			April 25, 2003				A PART AND	all 11 - feet	
Field Crew:			KN, DR, KB			enderstander 196		and the second	
a						The second second	State Manue	all states and	AL BEACH
Station	Rod Ht.	Elevation	SUMMARY	DATA			the set	and the second second	
0	4.55	100.00	Bankfull Elev	vation:	98.29		No Car Pick	-1	and the second s
2.5	4.57	99.98	Bankfull Cro	ss-Sectional Area:	21.30	and the second	The start		a produced
4.1	4.51	100.04	Bankfull Wie	ith:	19.36		the start		and a second
4.9	4.39	100.16	Flood Prone	Area Elevation:	100.01	and the second sec	Store and		
5.3	4.56	99.99	Flood Prone		34.00		Contraction of the		
0	4.0	99.95	Max Depth a	t Bankfull:	1.72	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Party	in terms	Proven
0.0	5.01	99.34	W / D Potiot	at Danklun:	1.10	5.2	and when a		
10.7	5.45	99.31	Fntronohmor	t Datio:	17.0	EL LAND	AND ALK	10 alerta	1.446
11.1	5.43	99.10	Bank Height	Ratio:	1.70	10000	CONTRACTOR OF	- we	
12.4	6.47	98.05	Slope (ft/ft)	Katio.	0.011	a filst to a sec			
12.9	6.52	98.03	Discharge (cf	če)	83.93	Stream Type:	B4c		
13.2	6.89	97.66	D-a XS1		22	Stream Typer	2.0		
14.1	7.04	97.51	D ₅₀ Profile 1		35	ł			
14.3	7 19	97.36	D ₅₀ 110me 1		55	1			
15	7.28	97.27							
15.7	7.55	97	·						
16.7	7.62	96.93		Lower	Vadkin Ri	var Basin UT to Bac	k Crook XS-1 (I	Riffla)	
17.5	7.58	96.97		Lower		ver Dasin, OT to Daci	K CICCK, AD-1 (1	XIIIC)	
17.9	7.67	96.88							
18.9	7.59	96.96	110 -						
20.5	7.77	96.78] [
21.7	7.82	96.73							
22.5	7.75	96.8	105 -						
25.3	7.81	96.74	j jet j						
25.9	7.86	96.69	Je la						
27	7.47	97.08	<u>ຼຣ</u> 100 +					A	
27.6	7.98	96.57	vat				· · · · · · · · · · · · · · · · · · ·		
29.7	7.83	96.72							
30	7.42	97.13	95 +						
30.3	7.00	90.09						 Ban	xfull
31.2	7.03	96.60						Floo	d Prone Area
31.6	7.51	96.91	90 +		1				
31.7	7.18	97 37	0	10		20	30	40	50
32	6.72	97.83				Station (feet)			
32.3	6.49	98.06							
32.6	6.21	98.34							
34.2	6.02	98.53	1						
37.6	5.44	99.11	1						
38.5	5.67	98.88							
40	5.57	98.98							
42	5.07	99.48							

Stream:	UT to Back Creek
Location:	Cross-section #1 (Sta 1+33)
Date:	4/25/2003

[Particle	Size Range (mm)	Total #	Item %	% Cum.
S/C	Silt/Clay	0 < 0.062	2	4	4
	Very Fine Sand	0.062 < 0.125	2	4	8
Sand	Fine Sand	0.125 < 0.25	2	4	12
	Medium Sand	0.25 < 0.50	0	0	12
	Coarse Sand	0.50 < 1.0	1	2	14
	Very Coarse Sand	1 < 2	2	4	18
	Very Fine Gravel	2 < 4	0	0	18
	Fine Gravel	4 < 6	1	2	20
	Fine Gravel	6 < 8	1	2	22
el	Medium Gravel	8 < 11	4	8	29
rav	Medium Gravel	11 < 16	5	10	39
G	Coarse Gravel	16 < 22	6	12	51
	Coarse Gravel	22 < 32	9	18	69
	Very Coarse Gravel	32 < 45	2	4	73
	Very Coarse Gravel	45 < 64	5	10	82
	Small Cobble	64 < 90	3	6	88
01	Medium Cobble	90 < 128	1	2	90
ū	Large Cobble	128 < 180	4	8	98
	Very Large Cobble	180 < 256	1	2	100
	Small Boulder	256 < 362	0	0	100
<u> </u>	Small Boulder	362 < 512	0	0	100
31dı	Medium Boulder	512 < 1024	0	0	100
В	Large Boulder	1024 < 2048	0	0	100
	Very Large Boulder	2048 < 4096	0	0	100
Bdrk	Bedrock	Bedrock	0	0	100
		Totals:	51	100	100

Size percent less than (mm)									
D16	D35	D50	D84	D95					
1.6	14	22	70	160					

Percent by substrate type (%)									
Silt/Clay	Sand	Gravel	Cobble	Boulder	Bedrock				
4	14	65	18	0	0				

River Basin:			Lower Ya	adkin						STR AL	1	1 - All and	
Watershed:			UT to Ba	ck Cree	k					Physe of	ALT AL	The same	19 19
XS ID			XS-2 (Po	ol)				1			Rest PO		Cin Milling
Drainage Are	ea (sq mi):		0.74					官规		1 1/1		T.	
Date:	· • ·		April 24,	2003				1		A - W - Y	- Service	1th	A
Field Crew:			KN, DR,	KB						a had	Res XI	111	N. Y.
									2419 1 31		111		AN AL
Station	Rod Ht.	Elevation	SUM	MARY	DATA			3-2			at and	the start	M.
0	2.08	100.00	Bank	full Ele	vation:		95.18			100000		a the start	1- Maria
4	1.71	100.37	Bank	full Cr	oss-Sectional Area:		26.00	25		1 A	1 Sector		and the second
8	1.27	100.81	Bank	full Wi	dth:		21.17	R. Jr.	A shall			and several	A REAL
9.5	1.22	100.86	Flood	l Prone	Area Elevation:		NA	3.5			Car SI	THE AND	AL AND A REAL
11	1.46	100.62	Flood	l Prone	Width:		NA	10			AND AND A		
12	1.86	100.22	Max	Depth a	at Bankfull:		2.34						and the second
12.3	8.38	93.70	Mean	n Depth	at Bankfull:		1.23						
12.8	8.48	93.60	W / D) Ratio:	1		NA	6		STOLEY.	D.	The second	
14	8.68	93.40	Entre	enchme	nt Ratio:		NA			BALL (and the	
14.7	8.67	93.41	Bank	Height	t Ratio:		NA			1 - 10		and and in	the state of the
15	8.91	93.17	Slope	e (ft/ft):			0.0002						
16.6	8.92	93.16	Disch	arge (c	fs)		NA	Stream	т Туре:	B4c			
17	9.24	92.84	D ₅₀ X	S2			9						
17.8	9.16	92.92	D ₅₀ P	rofile 1			35						
19.9	9.05	93.03					•	-					
20.6	8.95	93.13	1										
22.2	8.55	93.53	1										
23.2	8.34	93.74	1			Lower	r Yadkin F	River Bas	in, UT to Ba	ick Creek, XS	-2 (Pool)	
24	7.75	94.33	1										
24.3	7.56	94.52	II	110									
25.7	7.34	94.74		110 -	-								
26.2	7.45	94.63]		-								
32	7.19	94.89		105	-								
33.4	6.9	95.18		105 -	-								
34.8	6.63	95.45	eei		-								
36.3	6.12	95.96	<i>t</i>										
37	5.95	96.13	tio	100 -									
37.4	5.89	96.19	a s		-								
38.5	5.59	96.49	Ele I		-					• •		•	
40.3	5.29	96.79		95 -									
43	5.27	96.81			-	****	****					·B	3ankfull
47	5.04	97.04	1		-							·F	lood Prone Area
56.2	4.8	97.28		90 -		1	+		+			<u>_</u>	
59.3	4.41	97.67	1	() 10	2	20	30	40	50)	60	70
61.4	4.27	97.81	1			-			Station /fr = 1	1			
62.5	4.24	97.84	4						Station (feet	/			
65.3	4.02	98.06	↓ └──										
69.5	3.89	98.19	4										
71	3.7	98.38											

Stream:	UT to Back Creek
Location:	Cross-section #2 (Sta 2+68)
Date:	4/24/2003

	Particle	Size Range (mm)	Total #	Item %	% Cum.
S/C	Silt/Clay	0 < 0.062	0	0	0
	Very Fine Sand	0.062 < 0.125	0	0	0
Sand	Fine Sand	0.125 < 0.25	0	0	0
	Medium Sand	0.25 < 0.50	7	14	14
	Coarse Sand	0.50 < 1.0	1	2	16
	Very Coarse Sand	1 < 2	10	20	36
	Very Fine Gravel	2 < 4	4	8	44
	Fine Gravel	4 < 6	1	2	46
	Fine Gravel	6 < 8	1	2	48
el	Medium Gravel	8 < 11	3	6	54
rav	Medium Gravel	11 < 16	1	2	56
G	Coarse Gravel	16 < 22	5	10	66
	Coarse Gravel	22 < 32	4	8	74
	Very Coarse Gravel	32 < 45	5	10	84
	Very Coarse Gravel	45 < 64	5	10	94
	Small Cobble	64 < 90	0	0	94
10	Medium Cobble	90 < 128	1	2	96
ū	Large Cobble	128 < 180	2	4	100
	Very Large Cobble	180 < 256	0	0	100
	Small Boulder	256 < 362	0	0	100
	Small Boulder	362 < 512	0	0	100
31di	Medium Boulder	512 < 1024	0	0	100
B	Large Boulder	1024 < 2048	0	0	100
	Very Large Boulder	2048 < 4096	0	0	100
Bdrk	Bedrock	Bedrock	0	0	100
		Totals:	50	100	100

Size percent less than (mm)									
D16	D35	D50	D84	D95					
0.9	1.9	9	45	110					

Percent by substrate type (%)								
Silt/Clay	Sand	Gravel	Cobble	Boulder	Bedrock			
0	36	58	6	0	0			
River Basin:			Lower Yadkin			The second second		A state of the sta
---------------------	-------------	-----------	---------------------	---------------------	------------------	-------------------------------	--	--
Watershed:			UT to Back Cree	ek				A A A A A A A A A A A A A A A A A A A
XS ID			XS-3 (Riffle/Ru	1)				
Drainage Are	ea (sg mi):		0.87	,				
Date:			April 24, 2003			A REAL PROPERTY.		A CONTRACTOR
Field Crew:			KN DR KB					the state of the state of the state
ricia crewi			in , Dit, ind				and the second of the	1000
Station	Rod Ht.	Elevation	SUMMARY	Z DATA			A CONTRACTOR	E. A. C. Mar
0	5.11	100.00	Bankfull Ele	evation:	99.64	WALL AND PARTY	a martine to the	
4	5.32	99.79	Bankfull Cr	oss-Sectional Area:	25.70	the second second second	AND A MAN	
6.5	5.5	99.61	Bankfull Wi	idth:	14.63	and the case of		and the second s
8	5.62	99.49	Flood Prone	Area Elevation:	103.12		and many the state	A MARCE MARK
9.8	6	99.11	Flood Prone	e Width:	125.00	and the second second	State of the second sec	
10.8	6.31	98.80	Max Depth	at Bankfull:	3.48	the state of the second	AND THE ST	Starting Starting
11.6	6.44	98.67	Mean Depth	at Bankfull:	1.76	and the second second	and a strain	and a state of the
12.4	6.69	98.42	W / D Ratio	•	8.3	The states of the states	No.	
13	7.05	98.06	Entrenchme	ent Ratio:	8.54			
13.8	7.53	97.58	Bank Heigh	t Ratio:	0.99	and the states		A set for set of the
14.5	7.97	97.14	Slone (ft/ft):		0.0014			
14.0	8 19	96.92	Discharge (nfe)	61.44	Stream Type	E5	
15.5	9 20	06.72	D VS2	.13)	0.24	Stream Type.	LJ	
10.0	0.55	90.72	$D_{50} A B $	•	0.34			
10.2	0.02	96.49	D_{50} Profile 2		0.2			
17.4	8.62	96.49	1					
18.5	8.95	96.16	1					
19.5	8.76	96.35						
19.8	8.63	96.48	<u> </u>	Lo	wer Yadkin River	Basin , UT to Back Cre	ek, XS-3 (Riffle/	Run)
19.9	8.37	96.74	1	10				()
20.3	7.91	97.20	1					
21	6.25	98.86	110 -	[
21.2	5.1	100.01		-				
21.5	4.86	100.25		-				
22.5	4.82	100.29	105 -	[
25	4.81	100.3	et)	£				
27	4.87	100.24	fee	F				
			5 100	<u>-</u>				• • • • •
			atio		++		/-	
			e Kŝ					
			ŭ.	-				
			95 -	-				
				-				Bankfull
				F				Flood Prone Area
			90 -	1		1		l
				0	10		20	
						Station (feet)		

30

Stream:	UT to Back Creek
Location:	Cross-section #3 (Sta 21+42)
Date:	4/24/2003

	Particle	Size Range (mm)	Total #	Item %	% Cum.
S/C	Silt/Clay	0 < 0.062	8	16	16
	Very Fine Sand	0.062 < 0.125	0	0	16
5	Fine Sand	0.125 < 0.25	12	24	40
ano	Medium Sand	0.25 < 0.50	12	24	64
S	Coarse Sand	0.50 < 1.0	4	8	72
	Very Coarse Sand	1 < 2	1	2	74
	Very Fine Gravel	2 < 4	3	6	80
	Fine Gravel	4 < 6	2	4	84
	Fine Gravel	6 < 8	2	4	88
el	Medium Gravel	8 < 11	5	10	98
rav	Medium Gravel	11 < 16	0	0	98
G	Coarse Gravel	16 < 22	1	2	100
	Coarse Gravel	22 < 32	0	0	100
	Very Coarse Gravel	32 < 45	0	0	100
	Very Coarse Gravel	45 < 64	0	0	100
	Small Cobble	64 < 90	0	0	100
Ы	Medium Cobble	90 < 128	0	0	100
G	Large Cobble	128 < 180	0	0	100
	Very Large Cobble	180 < 256	0	0	100
	Small Boulder	256 < 362	0	0	100
	Small Boulder	362 < 512	0	0	100
3ld	Medium Boulder	512 < 1024	0	0	100
щ	Large Boulder	1024 < 2048	0	0	100
	Very Large Boulder	2048 < 4096	0	0	100
Bdrk	Bedrock	Bedrock	0	0	100
		Totals:	50	100	100

	Size percent less than (mm)												
D16	D35	D50	D84	D95									
0.062	0.22	0.34	6	10									

	Percent by substrate type (%)													
Silt/Clay	Sand	Gravel	Cobble	Boulder	Bedrock									
16	58	26	0	0	0									

River Basin :			Lower Yadkin		7			all'	AN AREA		Berth - The	Brand
Watershed:			UT to Back Creek	ζ				ALL AND	and a lot	- It-	1999年後日前日本	S. INSIG
XS ID			XS-4 (Run/Pool)	•				N. Mar	and the second second		and the second	and a start
Drainage Are	ea (so mi):		0.87				La Transmer			a freedoment	at a second	and the second
Date:	··· (• 1 ····)·		April 24, 2003					and the second	12000	Enter	The Assessment	
Field Crew:			KN DR KB				State of the second		the for		the state	
ricia crew.			III, DI, IID		_						S. 1. 14	Charles in the second
Station	Rod Ht.	Elevation	SUMMARY	DATA			and the second second		a state of the sta	A States	State of the	Alex 2
0	5.33	100.00	Bankfull Elev	vation:		99.42	and the second	and the second			1 They	7.18
7	5.49	99.84	Bankfull Cro	oss-Sectional Area:		29.30	and a state of the		4	25 24	Are.	The states
8.3	5.6	99.73	Bankfull Wie	dth:		19.41		Se se	100	17 J 398-7		Real Property in
14	5.72	99.61	Flood Prone	Area Elevation:		102.76	De to P			-		S. Salar
17	6	99.33	Flood Prone	Width:		125.00	and the	A Prove	A LAL A		10 A	
20.1	6.47	98.86	Max Depth a	t Bankfull:		3.34				15-1		ALL ALL
21.1	6.68	98.65	Mean Depth	at Bankfull:		1.51		a state a state of	and the state of	-	A CHICKE	
22.4	6.87	98.46	W / D Ratio:			12.9			The second secon	1.	Contraction of the	
23.5	7.03	98.30	Entrenchmen	nt Ratio:		6.44			6	-	States and all all	A COL
25.4	7.64	97.69	Bank Height	Ratio:		1.06	3	and a los		Calennas 7		The start
26.3	7.72	97.61	Slope (ft/ft):			0.0025						
28	8.19	97.14	Discharge (cf	ís)		87.76	Stream Type:		C5			
28.5	8.64	96.69	D ₅₀ XS4			0.2						
28.8	8.67	96.66	D ₅₀ Profile 2			0.2						
29	8.79	96.54				•						
29.5	8.84	96.49	İ									
30	8.97	96.36	İ									
30.3	8.99	96.34	1		. .,				WG A (D			
30.8	9.17	96.16	t I		Lower Ya	adkin Rive	er Basin, UT to E	Back Creek	, XS-4 (Ru	n/Pool)		
31.2	9.25	96.08	1									
31.5	9.15	96.18	110 -									
32.1	8.76	96.57										
32.2	8.66	96.67										
32.4	8.27	97.06	105									
32.9	7.06	98.27	÷ 103									
33.3	5.79	99.54	fec									
33.7	5.54	99.79										
34.6	5.46	99.87				+					/*	
34.9	5.57	99.76	876								1	
39	5.5	99.83	Ŭ ŭ .							******		
			95 +									
											 Bankfull 	
											Flood Pron	e Area
			90 +	I			+		I		1	
			0)	10		20	1		30		40
							Station	(feet)				
			L									

Stream:	UT to Back Creek
Location:	Cross-section #4 (Sta 22+85)
Date:	4/24/2003

	Particle	Size Range (mm)	Total #	Item %	% Cum.
S/C	Silt/Clay	0 < 0.062	15	30	30
	Very Fine Sand	0.062 < 0.125	3	6	36
5	Fine Sand	0.125 < 0.25	10	20	56
ano	Medium Sand	0.25 < 0.50	10	20	76
S	Coarse Sand	0.50 < 1.0	10	20	96
	Very Coarse Sand	1 < 2	2	4	100
	Very Fine Gravel	2 < 4	0	0	100
	Fine Gravel	4 < 6	0	0	100
	Fine Gravel	6 < 8	0	0	100
el	Medium Gravel	8 < 11	0	0	100
rav	Medium Gravel	11 < 16	0	0	100
G	Coarse Gravel	16 < 22	0	0	100
	Coarse Gravel	22 < 32	0	0	100
	Very Coarse Gravel	32 < 45	0	0	100
	Very Coarse Gravel	45 < 64	0	0	100
	Small Cobble	64 < 90	0	0	100
19	Medium Cobble	90 < 128	0	0	100
CI	Large Cobble	128 < 180	0	0	100
	Very Large Cobble	180 < 256	0	0	100
	Small Boulder	256 < 362	0	0	100
L	Small Boulder	362 < 512	0	0	100
ldı	Medium Boulder	512 < 1024	0	0	100
щ	Large Boulder	1024 < 2048	0	0	100
	Very Large Boulder	2048 < 4096	0	0	100
Bdrk	Bedrock	Bedrock	0	0	100
		Totals:	50	100	100

	Size percent less than (mm)												
D16	D35	D50	D84	D95									
0.062	0.11	0.2	0.65	0.95									

	Percent by substrate type (%)													
Silt/Clay	Sand	Gravel	Cobble	Boulder	Bedrock									
30	70	0	0	0	0									

Appendix D

Stream Design & Spreadsheets

Stream Design Strategy

In the layout of the relocated stream design, the natural stability of the planform was of great concern. The two natural ranges for Rc/Wbkf and PP/Wbkf were targeted. However it was only after the second design iteration that these values were attained.

The allocation of the stream drop across the proposed profile had to match the three general reach gradients of the existing profile. After the first design iteration, it became obvious that there was going to be a hydraulic drop issue at the upstream gradient increase and a slope transition would be required at the downstream reduction in stream gradient. Because of concerns over a reduction in bed roughness along the steeper portion of the relocated alignment, the Sriffle/Save ratio was kept low and the Lriffle/Lpool ratio kept high. These two values are expected to adjust as the relocated channel sorts its bed over time. Also the Dpool/Dbkf ratio was held within a natural range, which results in the Wpool/Wbkf ratio being very low and out of range.

In cross section, the concern over the proposed channel bed roughness resulted to a reduction in both Dbkf and the W/D ratio. As a consequence the Abkf was higher and Vbkf lower than the target values.

The combination of planform, profile and dimension adjustments met the design shear velocity target value, which is an indication that the channel would remain stable once it is taken away from the valley walls and place back into an existing alluvial layer in the bottom of the valley.

At the upstream channel gradient transition, a hydraulic drop will result from the differences in the stream channel W/D ratios. To remedy this drop and prevent a headcut from proceeding upstream, a flow constrictor was designed to manage the energy of this water surface drop. The flow environment at the top of the project site is obviously energetic, such that a few step-pool structures may be required at the property line in-lieu-of the first riffle-pool sequence.

Tributaries where possible will be turned into the abandoned stream channel and connections provided to link the abandoned channel to the proposed channel. This will retain the natural bottom of the existing stream channel and provide even greater variety in rearing and refugia habitat. Where the exiting channel alignment and the proposed channel alignment crosses, the abandoned channel will be plugged at its upstream end and partially filled to prevent chute cutoffs from forming. There will also be a couple of very good opportunities to create off-channel oxbow habitat. Where the abandoned channel strikes the valley walls, a bench should be installed of soil such that vegetation can stabilize the exposed high banks.

The design spreadsheets are included on the following pages.

Profile	Un-Name	d Tributary t	to Back Cre	ek																						(0)			. .
Point	Station	Reach	Reach	Riffle I	Fixed Bed	Riffle	Pool	Hydraulic	Hydraulic Grade	Channel Bed	Total Riffle	e Total Poo	Channel	Hydraulio	c Average	Riffle	Pool	Station	Riffle Riffles	Average Riffle	Pool	Pools	Average Pool	Average Pool -Pool	Average i Design	wbkf	ble	Design Wbkf	Design in
Туре	(ft)	Type	Length (ft)	Length (ft)	Elevation (ft)	(ft)	Depth (ft)	(ft/ft)	(ft/ft)	(ft)	Length (ft)	Length (ft)	Length (ft)	Drop (ft)	(ft/ft)	(ft/ft)	Slope (ft/ft)	(ft)	Flag (#)	Length (ft)	Flag	(#)	Length (ft)	Spacing (ft)	Lm (ft)	(ft)	(ft)	(ft)	Range %
PT	1000.00				543.70	2			545.70	543.70	173.49	112.45	285.94	1.50	0.005246	0.006767	0.002899	1000.00	3	57.83		3	37.48333	95.31333	190.63	19.06	13.62	18	80%
PC	1016.79	riffle	16.79	16.79		2		0.006767	545.59	543.59	60.7%	39.3%				129%	55%	1016.79	1 0	84%	0		75%	80%					
PT	1036.07	pool	19.28	0.00		2		0.002899	545.53	543.53		UPPER M	IAJOR REA	СН				1036.07	0 0		1 0								
PC	1106.96	riffle	70.89	70.89		2		0.006767	545.05	543.05	Va	alley Length Sinuosity	: 245.41 : 1.165					1106.96	1 0		0								
DT	1152.81	pool	45.85	0.00		-		0.002899	544.92	542.02		Cindoony						1152.81	0		1								
	1102.01	riffle	85.81	85.81		2		0.006767	544.92	542.92								1152.01	1		0								
PC	1238.62	pool	47.32	0.00		2		0.002899	544.34	542.34								1238.62	0		0								
PT	1285.94	hydraulic o	drop		542.2 542.20	2 1.3			544.20 543.50	542.20 542.20	442.39	293.48	735.87	6.15	0.008357	0.010447	0.005208	1285.94	0 5	88.478	0	5	58.696	147.174	294.35	29.43	21.02	24	35%
PC	1394.05	riffle	108.11	108.11		1.3		0.010447	542.37	541.07	60.1%	39.9%				125%	62%	1394.05	1 0	129%	0 0		117%	124%					
DT	1/38.07	pool	44.02	0.00		13		0.005208	542 14	540.84		MIDDLE I	MAJOR REA	АСН				1/38 07	0		1								
	1430.07	riffle	98.87	98.87		1.5		0.010447	542.14	540.64	Va	alley Length	612.49					1430.07	1		0								
PC	1536.94	pool	49.61	0.00		1.3		0.005208	541.11	539.81		Sinuosity	: 1.201					1536.94	0		1								
PT	1586.55	riffle	90.45	90.45		1.3		0.010447	540.85	539.55								1586.55	0 1		0 0								
PC	1677.00	lood	89.14	0.00		1.3		0.005208	539.91	538.61								1677.00	0 0		0 1								
PT	1766.14	riffle	79.64	79.64		1.3		0 010447	539.44	538.14								1766.14	0		0								
PC	1845.78	naal	20.74	0.00		1.3		0.005200	538.61	537.31								1845.78	0		0								
PT	1876.49	роог	30.71	0.00		1.3		0.005208	538.45	537.15								1876.49	0		0								
PC	1941.81	riffle	65.32	65.32		1.3		0.010447	537.77	536.47								1941.81	1 0		0								
PT	2021.81	pool	80.00	0.00	535.65	1.7		0.005208	537.35	535.65	537 297.00	0 232.97	529.97	3.3	5 0.006321	0.007965	0.004226	2021.81	0 5	59.4	1	5	46.594	105.994	211.99	21.20	15.14	20	80%
PC	2065.52	riffle	43.71	43.71		17		0.007965	537.00	535 30	56.0%	44.0%				126%	67%	2065 52	1 0	86%	0		93%	89%					
DT	2440.50	pool	54.04	0.00		4.7		0.004226	506.77	E2E 07		Transistic	on					2110 50	0		1								
PI	2119.56	riffle	70.59	70.59		1.7		0.007965	536.77	535.07	Va	alley Length	: <mark>435.28</mark>					2119.56	1		0								
PC	2190.15	pool	33.81	0.00		1.7		0.004226	536.21	534.51		Sinuosity	: 1.218					2190.15	0 0		0 1								
PT	2223.96	riffle	63.71	63.71		1.7		0.007965	536.07	534.37								2223.96	0 1		0 0								
PC	2287.67	nool	52.63	0.00		1.7		0.004226	535.56	533.86								2287.67	0		0								
PT	2340.30	riffle	66.04	6.00		1.7		0.007065	535.34	533.64								2340.30	0		0								
PC	2407.24	nine	66.94	00.94		1.7		0.007965	534.81	533.11								2407.24	0		0								
PT	2440.27	pool	33.03	0.00		1.7		0.004226	534.67	532.97								2440.27	0		1 0								
PC	2492.32	riffle	52.05	52.05		1.7		0.007965	534.25	532.55								2492.32	1 0		0 0								
PT	2551 78	pool	59.46	0.00	532	2		0.004226	534.00	532.00	532 54	4 361 23	893 77	4.6	0 0 005147	0.006768	0 002757	2551 78	0 8	66 5675	1	7	51 60429	118 1718	236.34	23.63	16.88	18	179
	2620.17	riffle	78.39	78.39	002	-		0.006768	522.47	E21 47	59.6%	40.4%	000111		0 0.0001 11	132%	54%	2620.17	1	97%	0	•	103%	99%	200.01	20.00	10.00	10	,
PC	2030.17	pool	48.19	0.00		2		0.002757	533.47	531.47								2030.17	0		1								
PT	2678.36	riffle	82.29	82.29		2		0.006768	533.34	531.34		LOWER N	MAJOR REA	ACH				2678.36	0 1		0 0								
PC	2760.65	pool	45.92	0.00		2		0.002757	532.78	530.78	Va	alley Length Sinuosity	: 725.63 : 1.232					2760.65	0 0		0 1								
PT	2806.57	riffle	66 84	66 84		2		0 006768	532.65	530.65		-						2806.57	0 1		0								
PC	2873.41	nool	76.91	0.00		2		0.002757	532.20	530.20								2873.41	0		0								
PT	2950.22		70.81	0.00		2		0.002757	531.99	529.99								2950.22	0		0								
PC	3027.89	riffle	77.67	77.67		2		0.006768	531.46	529.46								3027.89	1 0		0								
PT	3061.63	pool	33.74	0.00		2		0.002757	531.37	529.37								3061.63	0 0		1 0								
PC	3122.49	riffle	60.86	60.86		2		0.006768	530.96	528.96								3122.49	1 0		0								
DT	3176.28	pool	53.79	0.00		-		0.002757	530.81	528.81								3176.28	0		1								
	0004.00	riffle	58.10	58.10		2		0.006768	500.01	520.01								0004.00	1		0								
PC	3234.38	pool	84.19	0.00		2		0.002757	530.42	528.42								3234.38	0		υ 1								
PT	3318.57	riffle	68.82	68.82		2		0.006768	530.18	528.18								3318.57	0 1		0 0								
PC	3387.39	pool	18.59	0.00		2		0.002757	529.72	527.72								3387.39	0 0		0 1								
PT	3405.98	riffle	30 57	39.57		2		0.006769	529.67	527.67								3405.98	0		0								
P	3445.55	TITIC	53.57	4445	527.40	2		0.000708	529.40	527.40		4000	0.115		0.005-			3445.55	-	00.0	0	<u> </u>	50.0						
			sum:	1445.42							1445.42 59.1%	1000.13 40.9%	2445.55	16.30	0.005246				21 21	68.8	20	20	50.0	118.8					

Valley Length: 1950.67 ft Total Sinuosity: 1.254 Ave. Reach Sinuosity 1.203962 St/Sreach 1.04131

Appendix E

Reference Reach Data

From the survey of the two reference reach locations, the following geometry and flow conditions were calculated. The site location information of these two reference reaches follows:

			Stream		UTB	C US of McCair	n Site	1	F	Richland Creek	(
			Reach		F	Reference Reac	h			Reference	
			Station			0+00 to 7+12		┥┝───			
			Location		Composito	2 Diffle VS on					
			Description		Sample/Min	- 2 Rillie X5 and Max	Mean	Sample	Min	Max	Mean
			Stream Type		Sample/Iviin	IVIAX	Iviean	Sample		IVIAX	Mean
	*		Wbkf	(ft)	10.4	16.1	13.3	14.	8	27.1	21.0
			Dbkf	(ft)	0.90	1.20	1.05	0.8	0	1.50	1.15
	*		Abkf	(sa ft)	12.5	14.4	13.5	21.	2	22.3	21.8
	*	١	Wbkf/Dbkf (W/D)	(ft/ft)	11.6	13.4	12.6	18.	5	18.1	18.2
≿			Dmax	(ft)	1.40	1.70	1.55	1.9	0	2.00	1.95
Ā			Wfpa	(ft)	150.0	150.0	150.0	200	.0	200.0	200.0
ž			Wfpa/Wbkf (ER)	(ft/ft)	14.4	9.3	11.3	13.	5	7.4	9.5
SU	*		Save	(ft/ft)	0.0068	0.0072	0.0070	0.01	20		0.0120
	*		K		1.70		1.70	1.4	6		1.46
	*		D 50	(mm)							70.0
			D 84	(mm)							168.0
			Vbkf	(ft/sec)	4.4	5.0	4.7	5.8	3	6.8	6.3
	*		Q bkf	(cfs)	63.1	63.2	63.2	122	.6	151.4	137.0
			Wbkf	(ft)	10.4	16.1	13.3	14.	8	27.1	21.0
			Dbkf	(ft)	0.90	1.20	1.05	0.8	0	1.50	1.15
			A bkf	(sq ft)	12.5	14.4	13.5	21.	2	22.3	21.8
			Dmax	(ft)	1.40	1.70	1.55	1.9	0	2.00	1.95
	ш		W fpa	(ft)	150.0	150.0	150.0	200	.0	200.0	200.0
	E		Dtob	(ft)	2.2	3.6	2.9	3.4	L I	3.7	3.6
-	R		Vbkf	(ft/sec)	4.4	5.0	4.7	5.8	3	6.8	6.3
Ó			Qbkf	(cfs)	63.1	63.2	63.2	122	.6	151.4	137.0
SN		s	Wbkf/Dbkf (W/D)	(ft/ft)	11.6	13.4	12.6	18.	5	18.1	18.2
Ψ		Ê	Dmax/Dbkf	(ft/ft)	1.56	1.42	1.48	2.3	8	1.33	1.70
ā		RA	Dtob/Dmax	(ft/ft)	1.57	2.12	1.87	1.7	9	1.85	1.82
			Witpa/Wokt (ER)	(ft/ft)	14.4	9.3	11.3	13.	5	7.4	9.5
			Wpool	(ft)	10.1	16.0	14.0	┨┠────			15.2
	_		Dpool	(ft)	1.80	2.50	2.17	┨┣───			3.10
	8			(sq π)	10.4	19.3	15.9		_		36.5
	Ă	los		(ft/ft)	0.97	0.99	1.06	_			0.73
		RAT		(II/II)	2.00	2.08	2.07	-			2.09
		ш		(ILZ/ILZ) (#)	70.0	1.11	07.5	149	0	109.0	1.70
			<u>Lin</u>	(IL) (ft)	14.5	25.0	97.5	140	.0	26.9	120.0
Z			Whit	(ft) (ft)	135.0	23.9	135.0	75	0	20.0	75.0
Ē			K	(11)	1 70		1 70	1.4	6		1.46
F		s	I m/Whkf	(ft/ft)	6.73	7 45	7.36	10.0		3 99	6.11
5		Ê	Rc/Wbkf	(ft/ft)	1.39	1.43	1 41	10.0	0	0.99	1.09
		RA.	Wblt/Wbkf	(ft/ft)	12.98	1.01	10.19	5.0	7	0.00	3.58
<u> </u>			Sval	(ft/ft)	0.0070	0.0075	0.0073	0.01	26		0.0126
1			Save	(ft/ft)	0.0068	0.0072	0.0070	0.01	20		0.0120
			Sriffle	(ft/ft)	0.0100	0.0410	0.0199	0.00	30	0.0756	0.0289
			S pool	(ft/ft)	0.0000	0.0013	0.0003	0.00	09	0.0074	0.0027
щ			Lriffle	(ft)	9.0	108.0	40.7	16.	0	103.0	46.0
긑			Lpool	(ft)	31.0	108.0	53.4	28.	0	89.0	47.6
₽ 2			P to P	(ft)	43.5	181.0	80.3	38.	0	147.0	92.3
ā			Sriffle/Save	(ft/ft)			2.8429				2.4122
		S	Spool/Save	(ft/ft)	0.0000	0.1806	0.0429	0.07	58		0.2290
1		ATIC	Lriffle/Wbkf	(ft/ft)	0.87	6.71	3.07	1.0	8	3.80	2.20
1		Ř	Lpool/Wbkf	(ft/ft)	2.98	6.71	4.03	1.8	9	3.28	2.27
L			P to P/Wbkf	(ft/ft)	4.18	11.24	6.06	2.5	7	5.42	4.40
s			D50-reach	(mm)	23	54	39				70
F			D84-reach	(mm)	84	114	99	↓ ┣━━━━			168
R			D50-riffle	(mm)				79			
Ē			D84-riffle	(mm)				15	>		
Ň		<u> </u>	D50-pool	(mm)				60			
I			D 84-p00l	(mm)			1	18	1		1

Memorandum

Re: McCain Mitigation Site Reference Reaches

Date: May 21, 2004

Introduction/Overview

As part of the Mitigation Planning effort for the McCain Site in Randolph County, North Carolina, a suitable reference reach was needed to develop dimensionless geomorphic ratios for use in the stream restoration design. The selection criteria included a stable reach occurring under similar hydrophysiographic, landform, and watershed land use conditions.

The project site occurs in rolling to hilly terrain of the Carolina Slate Belt ecoregion of the Piedmont physiographic province. The project stream runs through a gently sloping valley (average slope of approximately 0.8%) with alternating toe slopes. The project watershed is a small (0.88 square miles), primarily forested watershed with a small percentage of agriculture, pasture, and rural, low-density residential land uses. A reference reach with similar site and watershed conditions was desired.

It was determined that the restored stream will contain sections of two Rosgen stream types – "C3" and "C4." The NCDOT reference reach database was used to select potential reference reaches with similar stream type and slope. The database did not contain any Rosgen "C3" type steams in the piedmont physiographic province, however four potential "C4" reference reaches were visited to determine their use for this project. The reaches are listed below:

- UT to South Fork Cane Creek, Chatham County
- Morgan Creek, Orange County
- Spencer Branch, Montgomery County
- Richland Creek, Moore County

Richland Creek was selected as a reference reach for the McCain Site. In addition, a second suitable reference reach site was located on the project stream (UT to Back Creek), immediately upstream of the project site. Each reference reach is described below with the location, description, and surveyed data.

		Stream		UTBC	US of McCa	ain Site]	R	lichland Cre	ek		Design	I
		Reach		Re	eference Rea	ach			Reference			Ratios	
-		Station	<u> </u>		0+00 to 7+1	2	-						
-		Description	<u> </u>	omposite -	2 Riffle XS a	and 3 Pool X							
							4						•
				Sample/Mir	Max	Mean	-	Sample/Min	Max	Mean		Design	
		Stream Type	(())	- 10.1	10.1	C4/E4				C3/C4		B3c/C4	
	*	Wbkt Dbkf	(ft) (ft)	10.4	16.1	13.3	-	14.8	27.1	21.0		18.8	
	*	DDKi Abkf	(IL) (sq.ft)	12.5	14.4	13.5	-	21.2	1.0	21.8		21.0	
	*	Wbkf/Dbkf (W/D)	(sq ii) (ft/ft)	11.6	13.4	12.6	1	18.5	18.1	18.2		17.0	
≻		Dmax	(ft)	1.4	17	16	1	1.9	2.0	2.0		2.0	
AR		Wfpa	(ft)	150.0	150.0	150.0		200.0	200.0	200.0		2.0	
M		Wfpa/Wbkf (ER)	(ft/ft)	14.4	9.3	11.3	1	13.5	7.4	9.5			
SU	*	Save	(ft/ft)	0.0	0.0	0.0]	0.0		0.0		0.6	
	*	К		1.7		1.7		1.5		1.5		1.5	
	*	D 50	(mm)							70.0			
		D84	(mm)							168.0			
	*	Vbkt	(ft/sec)			4.7	-	5.8	6.8	6.3		4.8	
		QDKI	(CIS)			0.7	J	122.0	151.4	137.0		100.0	L
		Dialilage Area	(1112)			0.7	Regional			0.9	Regional	0.9	Regional
	1	Wbkf	(ft)	10.4	16.1	13.3	Curve	14.8	27.1	21.0	Curve	18.8	Curve
		Dbkf	(ft)	0.9	1.2	1.1		0.8	1.5	1.2		1.1	
		Abkf	(sq ft)	12.5	14.4	13.5	16.0-16.5	21.2	22.3	21.8	20.0-20.5	21.0	19.7-20.2
							(8-32) 95%				(10-40) 95%		(10-40) 95%
		Dmax	(ft)	1.4	1.7	1.6	Confidence Interval	1.9	2.0	2.0	Confidence Interval	2.0	Confidence Interval
	щ	Wfpa	(ft)	150.0	150.0	150.0	-	200.0	200.0	200.0			
	Ē	Dtob	(ft)	2.2	3.6	2.9	-	3.4	3.7	3.6		4.0	
z	2	Obkf	(It/Sec)			4.7	45-67	0.0 122.6	0.0 151 /	137.0	61-85	4.0	50-84
Sic		QUKI	(015)			03.2	(22-200) 95%	122.0	131.4	137.0	(28-250) 95%	100.0	(28-250) 95%
N N		Wbkf/Dbkf (W/D)	(ft/ft)	11.6	13.4	12.6	Confidence Interval	18.5	18.1	18.2	Confidence Interval	17.0	Confidence Interval
l ≥		Dmax/Dbkf	(ft/ft)	1.6	1.4	1.5	1	2.4	1.3	1.7		1.6	
		Dtob/Dmax	(ft/ft)	1.6	2.1	1.9		1.8	1.9	1.8			
		Wfpa/Wbkf (ER)	(ft/ft)	14.4	9.3	11.3		13.5	7.4	9.5			
		Wpool	(ft)	10.1	16.0	14.0	-			15.2		28.2	
	_	Dpool	(ft)	1.0	1.5	1.3	4			2.4		2.2-2.75	
	8	Apool (0 Wacal/White	(SQ II)	10.4	19.3	15.9				3.1		02-78	
	₽.		(11/11) (ft/ft)	1.0	1.0	1.1	1			2.1		2.0-2.5	
		Apool/Abkf	(ft2/ft2)	0.8	1.1	1.0	1			0.7		2.9-3.6	
	-	Lm	(ft)	70.0	120.0	97.5		148.0	108.0	128.0		130-280	
-		Rc	(ft)	14.5	25.9	18.6		16.3	26.8	22.8		30-60	
Ř		Wblt	(ft)	135.0		135.0		75.0		75.0		100-250	
ΙË		к		1.7		1.7		1.5		1.5		1.45	
Ρ		S Lm/Wbkf	(ft/ft)	6.7	7.5	7.4	1	10.0	4.0	6.1		38183.0	
		Rc/Wbkf	(ft/ft)	1.4	1.6	1.4	-	1.1	1.0	1.1		1.6-3.2	
-		Svol	(It/It) (ft/ft)	0.0070	0.0075	0.0072		0.0126		3.0		0.9	
		Save	(ft/ft)	0.0070	0.0073	0.0073		0.0120		0.0120		0.8	
		Sriffle	(ft/ft)	0.0100	0.0410	0.0199	1	0.0030	0.0756	0.0289		1.0-1.4	
		Spool	(ft/ft)	0.0000	0.0013	0.0003		0.0009	0.0074	0.0027		0.0	
щ		Lriffle	(ft)	9.0	108.0	40.7		16.0	103.0	46.0		28-75	
툐		Lpool	(ft)	31.0	108.0	53.4		28.0	89.0	47.6		56-94	
5		P to P	(ft)	43.5	181.0	80.3		38.0	147.0	92.3		56-188	
		Sriffle/Save	(ft/ft)			2.8429				2.4122		2.4-2.8	
		Spool/Save	(ft/ft)	0.0000	0.1806	0.0429	-	0.0758	2.0	0.2290		0.0	
			(It/It) (ft/ft)	3.0	6.7	3.1	-	1.1	3.0	2.2		3-5	
		P to P/Wbkf	(ft/ft)	4.2	11.2	6.1		2.6	5.4	4.4		3-10	
-		D50-reach	(mm)	23	54	39				70		0.2-35. 18.4	1
L S		D84-reach	(mm)	84	114	99	1			168		4-175, 16.8	
RIA		D50-riffle	(mm)]	79				0.34-22	
Ë		D84-riffle	(mm)				1	155				6-70	
MA		D50-pool	(mm)	L		ļ	4	60				0.2-9	
		D84-pool	(mm)	L			J	181				0.65-45	l

UT to Back Creek (UTBC), Randolph County

The UTBC reference site is located in Randolph County, northwest of the City of Asheboro. The reference reach is located off of Lake Lucas Road, upstream of the McCain property on a parcel owned by Mr. Ray Thomas of Climax, NC. This 712-foot reach is a moderate to high sinuosity channel within a mature forested tract. UTBC, through the reference reach, has an average slope of 0.7% and was classified as a Rosgen "E4/C4" stream type. Maps showing the vicinity and site, as well as the reference reach survey summary is shown on the following pages.

The UT to Back Creek reference reach is located northwest of Asheboro in Randolph County.

The 712-foot reach is located upstream of the project site.

USGS Quad map showing the UTBC reference reach drainage area.

UT to Back Creek, cross-section 3, riffle, looking downstream

UT to Back Creek, cross-section 4, pool, looking downstream

UT to Back Creek, cross-section 5, pool, looking downstream

Cross Sec	tion									
					XS 1	Riffle UTBC				
98 97.5 97 (<u>+</u>) 96.5						/				
95.5 95.5 95.9 95.9 94.5 94.5						1 and a second				
93.5	0		10	20 W	idth fro	30 om River Left t	4(to Right (ft))	50	60
			section:	XS 1 Rifflo						
			stream:	UTBC						
			location:	Profile Sta	tion ()+27				
	L	aight of incl	description:	Setup 1 (R	iffle)					
	omit	distance	ES	100.00		FS	FS	W fna	channel	Manning's
notes	pt.	(ft)	(ft)	elevation		bankfull	top of bank	(ft)	slope (%)	"n"
Terrace		0	2.23	97.77		4.41	2.6	150.0	1.44	0.035
		10	2.44	97.56		95.59	97.4			
LTOB		17	2.33	97.67		h				i
		19.4	3.53	96.47		dimensions	6		-	
Undercut		17.5	5	95		12.5	x-section are	ea	1.2	d mean
LEW		19.6	6.01	93.99	-	10.4	width		12.7	wet P
TW		21.5	6.15	93.85		1.7	d max		1.0	hyd radi
		23	5.87	94.13		3.6	bank ht	o oroc	8.7	w/d ratio
REW/WS		25.5	5.53	94.47		150.0	vv nooa pror	ie area	14.4	entratio
Bench		20.5	4 71	94.77		hydraulics				
BKF		28.7	4.71	95.29		5.0	velocity (ft/s	ec)		
		30	4.28	95 72		63.1	discharge ra	te, Q (cfs)		
RTOB		32.3	2.6	97.4		0.89	shear stress	((lbs/ft.sa)		
Terrace		35	2.41	97.59		0.68	shear veloci	ty (ft/sec)		
		40	2.66	97.34		5.433	unit stream	ower (lbs/	ft/sec)	
		44	3.05	96.95		0.66	Froude num	ber	,	
Swale TW		46	3.42	96.58		7.5	friction facto	r u/u*		
		49	2.48	97.52		57.3	threshold gr	ain size (m	m)	
		52	2.64	97.36						
RBKP		57	2.57	97.43		check from	channel mat	erial		
							measured D	84 (mm)		
						0.0	relative roug	hness	0.0	fric. factor
						0.000	Manning's n	from chani	nel material	

Cross Sect	ion									
					XS 3	Riffle UTBC				
<u>00</u> –										
98										
97 -										
0.										
⊋ 96 -										
L) L			•							
- 59 gfi			/							
lec			/							
^ш 94 –							1			
							•			
93 -						V				
0.2										
92 +		10		20	30		40	50	60	70
0		10	4		Jth free	m Divor Loft to	Pight (#)	50	00	10
				VVI	un noi	TI RIVEI LEILIC	Right (II)			
			section:	XS 3						
				Riffle						
			stream:	UTBC						
			location:	Profile Stat	tion 2	+75				
	L	(aescription:	Setup 3 (Ri	mie)					
	omit	distance		100.00		FC	EC	W/ fpp	channol	Manning's
notes	onin	(ft)	(ft)	elevation		bankfull	top of bank	(ft)	slope (%)	"n"
Hillside		0	2.43	97.57		5.7	4.84	150.0	1.44	0.035
TOS	H	4	5.3	94.7		94.3	95.16	10010		01000
	Н	7	5.25	94.75						
LTOB-SC		11	5.68	94.32		dimensions	;			
LEW-SC		12	6.87	93.13		14.4	x-section are	ea	0.9	d mean
REW-SC		15.5	6.56	93.44		16.1	width		18.0	wet P
RTOB-SC		19	4.53	95.47		1.4	d max		0.8	hyd radi
		22	4.59	95.41		2.2	bank ht		17.9	w/d ratio
LTOB		28.5	4.78	95.22		150.0	W flood pror	ne area	9.3	ent ratio
BKF		30.5	5.64	94.36						
LEW		31	6.77	93.23		hydraulics				
TW		33	7.06	92.94		4.4	velocity (ft/s	ec)		
		35	6.78	93.22		63.2	discharge ra	te, Q (cfs)		
	Ц	37	6.65	93.35		0.72	shear stress	((lbs/ft sq)		
REW	님	39.3	6.6	93.4		0.61	shear veloci	ty (ft/sec)		
	님	39.7	5.97	94.03		3.534	Unit stream	power (lbs/i	vsec)	
BKF	H	40.3	5.76	94.24		0.67	Froude num			
PTOP	님	43	5.27	94.73		1.2	threshold or	ain sizo (m	m)	
Swale		40	4.04	90.10 Q/ 85		40.9	unesnolu gr	am size (m	111 <i>)</i>	
		52.5	4.88	95 12		check from	channel mat	erial		
	H	56	3.0	96.12		SHOOK HOIT	measured D	84 (mm)		
		61	3.45	96.55		0.0	relative roug	hness	0.0	fric factor
			0.40	00.00		0.0	i sianve roug	111000	0.0	mo. racior
RBKP		64	3.7	96.3		0.000	Manning's n	from chan	nel material	

Cross Sect	tion									
					XS 4	Pool UTBC				
99 🖵	1				1					
98 -										
97 -										
E of						· /	◆ → → →	•		
1 de Tion										
88 95 −						• ••				
Ξ ₀										
34										
93 -										
92 -										
0		10)	20		30	40		50	60
				Wid	th fron	n River Left to	o Right (ft)			
							o i ligili (li)			
				X0.4	_					
			section:	XS 4						
			stroom:							
			location:	Profile Sta	tion 4	+85.5				
			description:	Setup 4 (St	traigh	t Pool)				
	I	height of inst	trument (ft):	100.00						
	omit	distance	FS			FS	FS	W fpa	channel	Manning's
notes	pt.	(ft)	(ft)	elevation		bankfull	top of bank	(ft)	slope (%)	"n"
TOS		0	1.33	98.67		4.86	3.97	150.0	0.05	
		4	1.85	98.15		95.14	96.03			
		6.5	3.83	96.17						
LIOB		12	3.97	96.03		dimensions	S		4.5	
l la denerat		15	4.52	95.48		19.3	x-section are	а	1.5	d mean
		14.5	6 95	94		13.0	width		15.5	Wet P
		13.0	0.00	93.15		2.2	u max		1.2	nyu radi
		20	7.06	92.94		3.1 150.0	W flood prop	e area	0.0 <u>11 5</u>	ent ratio
		23	6.47	93.53		100.0	no no ou prom	ourou	1 110	Sherado
REW/WS		24.3	6.13	93.87		hydraulics				
		24.8	5.32	94.68	1	0.0	velocity (ft/se	c)		
BKF		27	4.86	95.14	1	0.0	discharge rat	e, Q (cfs)		
		28.5	4.83	95.17		0.04	shear stress	((lbs/ft sq)		
		29.5	4.97	95.03		0.14	shear velocit	y (ft/sec)		
RTOB		31	3.63	96.37		0.000	unit stream p	ower (lbs/t	ft/sec)	
		34	3.64	96.36		0.00	Froude numb	er		
		37	3.79	96.21		0.0	friction factor	u/u*		
		42	3.68	96.32		3.0	threshold gra	in size (mi	m)	
RBKP		50	3.67	96.33				wi e l		
						cneck from	channel mate			
						0.0	measured D8	54 (mm)	0.0	frio footor
						0.0	Manning's n	from chan	U.U Del material	flic. factor
					ļ	0.000	Manningsh	nom chall	iei material	

Longitu	dinal Pro	file	Hints		,	Stream: Watershed:	UT to Bac Back Cre	ck Creek ek							Location: Date:	US of Pro	ject Site			
									UT to E	Back Cree	ĸ									
	100 -																			
	98	*+,															_			
	96 🗙	++	ŦŢ	+			_		_								_		_	
~	94	* ^ × ×	≈	<u>× </u>	+ ++															
on (ft				-		××	>	< ×**	+ +	+++ \XX	+ +	÷ I								
evatio	92							<u>^</u>		XX	×	×								
Ξ	90							<u> </u>												
	88																_		_	
	86																			
	84	2			Δ			Δ		Δ								-		
	0			200			400			600				800			1000			1200
									Char	nel Distan	ce (ft)		b	ed 📥 wa	iter srf ×	BKF +	ltob 📥	WS -	RTOB 🛆	x-section
					100	:Elevation	BM													
notes	cros	S station		BS	HI 100	FS TP	FS	depth	FS	FS	FS	R I	FS	AZ	ELEV	ELEV water of	ELEV	ELEV	ELEV	ELEV
HOR	Section				100	IF	5.21	water	5.03	2.89	LIU		RIUB	azimum	94.79	water sri	94.97	97.11	LIUB	RIOB
HOP MP		16			100		5.75 6.31		5.48 5.53	4.34			2.32	225 225	94.25 93.69		94.52 94.47	95.66		97.68
Riffle	XS	1 27			100									225						
Glide Riffle		38 54			100		5.86 5.96		5.58 5.65	4.81	2.4	9 B	2.65 3.25	225 225	94.14 94.04		94.42 94.35	95.19 95.36	97.51 97.12	97.35 96.75
Riffle		64			100	4.07	6.15		5.83	4.81	3.1	1	3.23	225	93.85		94.17	95.19	96.89	96.77
IPT				5.54	100.57	4.97										#N/A	#N/A	#N/A	#N/A	#N/A
TR Run		84 97			100.57		7.06		6.81 6.81	6.13 5.94	4.3	B 1	4.4	225	93.51 93.08		93.76 93.76	94.44 94.63	96.19 96.26	96.17 96.22
Pool		103			100.57		7.57			5.98					93			94.59		
Pool MP	XS	2 108 116			100.57		7.61 7.65		6.81	5.85 5.81	4.5	5	4.2	135	92.96 92.92		93.76	94.72 94.76	96.02	96.37
Pool		132			100.57	6 97	7.77		6.82		4.8	9	4.39	135	92.8		93.75		95.68	96.18
				5.62	99.32	0.07										#N/A	#N/A	#N/A	#N/A	#N/A
Glide TR	_	192 217			99.32 99.32		5.99 6.47		5.61 6.25	4.67	3.6	1 R	3.86	180 180	93.33 92.85		93.71 93.07	94.65 94.26	95.71 95.14	95.46 95.23
HOR/B	R	232			99.32		6.44		6.25	5.47			4.00	180	92.88		93.07	93.85	55.14	30.20
BR Riffle		246 267			99.32 99.32		6.52 6.77		6.43	5.45	4.34	4	4.31	157.5 157.5	92.8		92.89	93.87 93.67	94.98	95.01
Riffle	XS	3 275			99.32		7.06		6.65	5.7	4.7	8	4.84	180	92.26		92.67	93.62	94.54	94.48
rossover	Bar	300			99.32 99.32		6.99 7.66		7.16	5.71	4.7.	2	4.94	180	92.33		92.51	93.01	94.0	94.36
HOR	_	313 340			99.32 99.32		7.91		7.16	6.28	5.3	R	4 89	180 180	91.41 91.92		92.16 92.16	93.04 92.96	93 94	94 43
TP 3					99.32	7.48				0.00					01102		02.10	02.00	00.01	0 11 10
НОР	_	386		5.61	97.45 97.45		6.41		6.1				_	225	91.04	#N/A	#N/A 91.35	#N/A	#N/A	#N/A
Pool		401			97.45		7.02		6.11				0.70	225	90.43	1	91.34	00.74		00.70
Pool Pool		440			97.45 97.45		7.43 6.35		6.12	4.74			3.72	225 225	90.02 91.1		91.33	92.71		93.73 93.97
Pool	YS	476			97.45 97.45		6.8 7.06		6.13	4.98	4.1	1	3.6	225	90.65		91 32	92.47	93.34	93.85 93.82
HOR		507			97.45		6.35		6.14	4.00	4.1	7	3.78	202.5	91.1		91.31	32.33	93.28	93.67
HOP		519 529			97.45 97.45		6.88 7.52		6.63 6.64					202.5 180	90.57 89.93		90.82 90.81			
		550			97.45		6.93		6.67					180	90.52		90.78			
HOP TP 4		562			97.45 97.45	6.47	7.02		6.79		4.0	3	_	225	90.43		90.66		93.37	
				7.22	98.2											#N/A	#N/A	#N/A	#N/A	#N/A
Pool	_	562			98.2		8.25		7.5	6.51	4.7	1	4.72	225	89.95		90.7	91.69 91.93	93.49	93.48
Pool	XS	5 582			98.2		8.5		7.5	5.96	4.9	7	4.86	225	89.7		90.7	92.24	93.23	93.34
HOR		610			98.2		8.36 7.9		7.5	6.07	4.7		4.78	315	09.84 90.3		90.7	92.13	93.49	93.42
HOP		619 628			98.2 98.2		8.02 9.33		7.71				5.48	315 315	90.18 88.87		90.49 90.48		-	92 72
HOR		650			98.2		7.94		7.72		5.63	3	6.05	315	90.26		90.48	1	92.57	92.15
HOP Pool		664 679			98.2 98.2		8.34 9.01		8.07 8.07	7.04	5.8	5	5.85	315 270	89.86 89.19		90.13 90.13	91.16	92.35	92.35
Pool		694			98.2		9.2		8.07	6.91	6.0	7	5.43	270	89		00.12	91.29	92.13	92.77
TP 4		712			98.2	7.22	9.02		8.07					270	o9.18		90.13			
Cain Site	- HOR	1052		7.41	98.39 98.39		13.15		12.86					270	85.24	#N/A	#N/A 85.53	#N/A	#N/A	#N/A
For Patte	ern	1100			98.39				12100					180			23.00	1		
					98.39			1								1	1	1	1	1 1

Pebble Count of Cha	nnel Reac	h					Pebble Cou	ınt,							
Material	Size Rang	je (mm)	Count	T			UTBC								
silt/clay	0	0.062		##											
very fine sand	0.062	0.13		##			Profile Stati	on 0+00 to	o 1+32						
fine sand	0.13	0.25		##		Note:	Composite	Sample -	70% Riffle	e; 30% Poo					
medium sand	0.25	0.5		##											
coarse sand	0.5	1		##					Pebl	ole Count,	UTBC	_			
very coarse sand	1	2		##	100% -										20
very fine gravel	2	4	1	##	90% -										18
fine gravel	4	6	3	##											
fine gravel	6	8	1	##	80% -										16
medium gravel	8	11	8	##	- %07 a							<u> </u>			14 ¬
medium gravel	11	16	7	##	ir th										. un
coarse gravel	16	22	/	##	. 90% -										12 g
coarse gravel	22	32	2	##	t 50% -										10 9
very coarse gravel	32	45	13	##							- I I				lo fi ps
very coarse gravel	45	64	10	##	<u> </u>										8 Ti
small cobble	64	90	15	##	200/										
	90	128	18	##	30% -						/r				6 ⁰⁷
large cobble	128	180	5 4	## ##	20% -						⋪				4
small boulder	256	250	4	## ##	4.00/					▏▕▌▏∮					<u> </u>
small boulder	362	512		##	10% -										2
medium boulder	512	1024		##	0% -		┉┈		┷┙═──═╴		▋▋─▋─▋	<u>┞</u> ╶┞╴┠╶┠┈┠			0
large boulder	1024	2048		##	0.	01	0.1		1	10		100	1000	1000	0
very large boulder	2048	4096		##	_	-	-		r	orticlo sizo	(mm)				-
	total parti	cle count:	94	i					ł		(1111)	- cumula	tive %	# of particle	es
											L			•	
bedrock			6	1	based on			size perc	ent less tl	nan (mm)			particl	e size distri	bution
clay hardpan					sediment		D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				1	particles only		12.269	35.45	53.7	79	114	172	3.2	37.4	3.0
artificial				1	based on			percent	by substr	ate type			•		
	to	otal count:	100	1	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
							0%	0%	52%	42%	0%	6%	0%	0%	0%

Pebble Count of Cha	nnel Reac	h					Pebble Cou	unt,							
Material	Size Rang	je (mm)	Count	1			UTBC								
silt/clay	0	0.062	1	##											
very fine sand	0.062	0.13		##			Profile Stati	ion 1+92 te	o 7+12						
fine sand	0.13	0.25		##		Note:	Composite	Sample -	50% Riffle	e; 50% Poo					
medium sand	0.25	0.5		##											
coarse sand	0.5	1		##					Pebb	ole Count,	UTBC	_			
very coarse sand	1	2		##	100%										16
very fine gravel	2	4		##	90%										
fine gravel	4	6	3	##								,≓			14
fine gravel	6	8	5	##	80%	-									10
medium gravel	8	11	14	##											12
medium gravel	11	16	12	##	t t						F				nn
coarse gravel	16	22	13	##	<u>,</u> 60%										
coarse gravel	22	32	8	##	t 50%										° °
very coarse gravel	32	45	9	##	0 50%										o f p
very coarse gravel	45	64	10	##	<u>8</u> 40%						/				arti
small cobble	64	90	9	##							,				o <u>c</u>
medium cobble	90	128	8	##	30%										0 1
large cobble	128	180	4	##	20%										4
very large cobble	180	256	2	##											2
small boulder	200	30Z		##	10%	-									2
medium boulder	512	1024		## ##	0%				└─────────────────────── ─────────────	╺═┸╏╿╿					0
large boulder	1024	2048		##	0,0	01	01		1	10		100	1000	1000	0 0
verv large boulder	2048	4096		##	0	.01	0.1		'		(100	1000	1000	0
Very large bealder	total parti	cle count:	98	1					þ	particle size	(mm)		ative %	# of particl	es
	total parti		50								L	ournui			
bedrock			2	1	based on			size perc	ent less th	nan (mm)			particl	e size distri	bution
clay hardpan				1	sediment		D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				1	particles only	,	9.313	15.65	23.1	43	84	141	3.1	28.0	3.0
artificial				1	based on			percent	bv substr	ate type			•		
	to	otal count:	100	1	total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
				ll I			1%	0%	74%	23%	0%	2%	0%	0%	0%

Richland Creek, Moore County

The Richland Creek reference reach is located in Moore County, west of the town of Carthage and upstream (west) of Mount Carmel Road on the Occoneechee Scout Reservation. This 525-foot reach is a moderate sinuosity channel occurring within a late-stage successional forested tract. Richland Creek, through the reference reach, has an average slope of 1.2% and was classified as a Rosgen "C3/C4" stream type. Maps showing the vicinity and site, as well as the reference reach survey summary is shown on the following pages.

The Richland Creek reference reach is located west of Carthage in Moore County.

The 525-foot reach is located upstream of Mount Carmel Road in a forested tract on the Occoneechee Scout Reservation.

USGS Quad map showing the Richland Creek reference reach drainage area.

Richland Creek, cross-section 1, riffle, looking downstream

Richland Creek, cross-section 2, pool, looking downstream

Richland Creek, cross-section 3, riffle, looking downstream

Cross Sec	tion								
000-000	areri								
				XS	2 Poc	ol Richland Cre	eek		
101	1								
100									
100	´ 🔶								7
99)								
£ 98	3								
io o	, 🗖								
e at									
ш 96	5								
95	5				1				
0.									
92	+								
93	3 💻								
	0	10	20	3	0	40	50 60	70	80
				W	idth fro	om River Left f	to Right (ft)		
			section:	XS 2					
				Pool					
			stream:	Richland C	reek				
			location:	Profile Sta	tion 2	+33			
			description:	Setup 2 (P	ool)				
	ł	neight of inst	trument (ft):	102.20					
	omit	distance	FS			FS	FS W fpa	channel	Manning's
notes	pt.	(ft)	(ft)	elevation		bankfull	top of bank (ft)	slope (%)	"N"
Terrace		0	2.59	99.61	-	5.44	4.27	0.09	
		12	3 14	99.45	-	90.70	97.93		
	H	15	3.24	98.96	-	dimensions	1		
I TOB		18.5	4.14	98.06		35.6	x-section area	24	d mean
2100		20	5.59	96.61		15.2	width	19.1	wet P
Undercut		18.8	6.59	95.61		3.1	d max	1.9	hyd radi
LEW		20.2	7.59	94.61		4.3	bank ht	6.4	w/d ratio
		23	8.13	94.07		0.0	W flood prone area	0.0	ent ratio
TW		26.5	8.53	93.67		· · · · · · · · · · · · · · · · · · ·			
		29	8.05	94.15		hydraulics			
REW/WS		33.5	6.84	95.36		0.0	velocity (ft/sec)		
BKF		35	5.44	96.76		0.0	discharge rate, Q (cfs)		
Floodplain		40	4.95	97.25		0.10	shear stress ((lbs/ft sq)	
RTOB		48	4.27	97.93		0.23	shear velocity (ft/sec)	16.1	
Terrace	<u> </u>	56	4.64	97.56		0.000	unit stream power (lbs	/ft/sec)	
Terrace	-	64	4.82	97.38		0.00	Froude number		
TS Hillsida		<u> </u>	4.55	97.65		0.0 6 9	threshold grain size (n	om)	
Hillslue		76	2 / 8	90.02 QQ 72		0.0	ninesholu grain size (n	1111)	
		- 70	2.40	33.1Z		check from	channel material		
	H						measured D84 (mm)		
						<u>0-0</u>	relative roughness	0-0	fric. factor
	Н					0.000	Manning's n from char	nel material	110.1000
					J	L	0		

Cross Sec	tion														
				XS	3 Riffl	e Richland Cr	ook								
				70	5 1111		CCK								
101															
100	_								/						
99															
08															
£ 07															
uo 9/															
96 vati															
<u>в</u> 95		$\backslash/$					1								
94															
93															
92 91 0 10 20 30 40 50 60 70 80 Width from River Left to Right (ft) Section: XS 3 Riffle stream: Richland Creek															
91	-														
	0	10	20	30		40	50 6) 7	0 8	0 90					
				W	idth fro	om River Left f	to Right (ft)								
section: XS 3															
	section: XS 3 Riffle														
	section: XS 3 Riffle stream: Richland Creek														
	section: XS 3 Riffle stream: Richland Creek														
	section: XS 3 Riffle stream: Richland Creek location: Profile Station 4+71														
			description:	Setup 4 (R	iffle)										
	ł	height of ins	trument (ft):	101.28		50	50	14/ 6							
notos	omit	distance	FS (#)	alavation		FS	FS top of book	VV fpa		Manning's					
FD/ Terrac	ρι.	(11)				7 37		150.0	1 73	0.035					
Terrace hid		10	7.32	93.96		93.91	95.34	130.0	1.15	0.000					
	Н	16	4.57	96.71											
LTOB		25	5.22	96.06	1	dimensions	3								
Bot Bank		31	6.75	94.53	1	22.3	x-section are	ea	1.5	d mean					
Bench		34	7.19	94.09		14.8	width		16.6	wet P					
LBKF		37.5	7.37	93.91		2.0	d max		1.3	hyd radi					
		39.3	8.07	93.21		3.4	bank ht		9.8	w/d ratio					
LEW		39.6	9.25	92.03		150.0	W flood pro	ne area	10.1	ent ratio					
Drofile Ter	<u> </u>	42	9.22	92.06	-	budreulier		_							
Frome rap		40	9.33	91.95	-	e o	volocity (ft/o	00)							
REW/		- 49 50.7	8.03	92.10	1	0.0 151 /	discharge ra	(cfs)							
	H	51	8.09	93 19	1	1 45	shear stress	(lbs/ft sa)							
	Н	53.5	6.69	94.59		0.86	shear veloci	tv (ft/sec)							
RTOB		57	5.94	95.34	1	11.053	unit stream	power (lbs/	ft/sec)						
		63	5.29	95.99	1	0.95	Froude num	ber							
Top slope		67	4.99	96.29	1	7.9	friction facto	r u/u*							
		70	4.17	97.11]	149.0	threshold gr	ain size (m	m)						
Hillside		78	0.9	100.38		·									
						check from	channel mat	erial							
							measured D	84 (mm)	-						
	Ц				-	0.0	relative roug	hness	0.0	fric. factor					
	Ц					0.000	ivianning's n	from chani	nel material						
	\Box														

Pebble Count of Cha	nnel Reacl	h				Pebble Co	unt,							
Material	Size Rang	le (mm)	Count	1										
silt/clay	0	0.062		##										
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25		##	Note	Richland (Creek XS 1							
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##	1000/			F	Pebble Cour	nt,	_ 1			
very coarse sand	1	2		##	100%									30
very fine gravel	2	4		##	90%									
fine gravel	4	6		##										25
fine gravel	6	8		##	80%									-
medium gravel	8	11		##	UE 70%									-
medium gravel	11	16	1	##	r tr									20 ฐ
coarse gravel	16	22	1	##	<u>e</u> 60%									nbe
coarse gravel	22	32	4	##	± 50%									15 9
very coarse gravel	32	45	11	##	9 30 %						Ý			15 f ps
very coarse gravel	45	64	15	##	පී 40%									arti
small cobble	64	90	14	##	0.00/						ίΙΙΙ.			10 <u>ត្ត</u>
medium cobble	90	128	28	##	30%									0
large cobble	128	180	16	##	20%									
very large cobble	180	256	9	##										5
small boulder	200	512	-	##	10%									
medium boulder	512	1024		##	0%									0
large boulder	1024	2048		##	0.01	0.1		1	10		100	1000	1000	0
verv large boulder	2048	4096		##	0.01				oortiolo oizo	(mm)				•
ge u e u e e	total parti	cle count:	100	1				ł	barticle size	(mm)	- Cumula	tive %	# of particle	25
										L				
bedrock				1	based on		size perc	ent less t	han (mm)			particl	e size distri	bution
clay hardpan				1	sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				1	particles only	43.627	68.85	94.6	114	158	219	1.9	83.1	1.9
artificial				1	based on		percent	by substr	ate type					
	tc	otal count:	100	1	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
				ll I		0%	0%	32%	67%	1%	0%	0%	0%	0%

Pebble Count of Cha	nnel Reacl	h					Pebble Cou	ınt,							
Material	Size Rang	e (mm)	Count	Ī											
silt/clay	0	0.062		##											
very fine sand	0.062	0.13		##											
fine sand	0.13	0.25		##	N	lote:	Richland C	reek XS 2	2						
medium sand	0.25	0.5		##											
coarse sand	0.5	1	3	##	1000/					Pebble Cou	nt,				10
very coarse sand	1	2	4	##	100%										16
very fine gravel	2	4	5	##	90% 🕂							. /			
fine gravel	4	6	5	##											14
fine gravel	6	8	4	##	80% +										10
medium gravel	8	11	5	##	und 10% →										12
medium gravel	11	16	3	##											
coarse gravel	16	22	3	##	<u>e</u> 60% +							#			be
coarse gravel	22	32	7	##	t 50%						j				0 Î
very coarse gravel	32	45	1	##											o f p
very coarse gravel	45	64	8	##	ଞ୍ଚି 40% -										arti
small cobble	64	90	7	##	0.00/						_ ∕≝				o cleg
medium cobble	90	128	14	##	30% +										05 A
large cobble	128	180	9	##	20% 🕂										7
very large cobble	180	200	2	##											2
small boulder	362	512	<u> </u>	## ##	10% ++				l l l r						-
medium boulder	512	1024	•	##	0% 📙					┶┶╝┈╝╌╝					0
large boulder	1024	2048		##	0.01	1	0.1		1	10		100	1000	1000	0
verv large boulder	2048	4096		##	0.01		011		•	nomiala aima	(100.000)				•
ge u e u e e	total parti	cle count:	93							particle size	(mm)	- Cumula	ative %	• # of particl	es
	total parti										L				
bedrock			10		based on			size perc	ent less t	han (mm)			particl	e size distri	bution
clay hardpan					sediment		D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				1	particles only		5.052	22.66	59.9	103	181	251	7.4	30.2	6.0
artificial					based on			percent	by subst	rate type					
	tc	otal count:	103		total count		silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
							0%	7%	40%	40%	4%	10%	0%	0%	0%

Pebble Count of Cha	nnel Reacl	h				Pebble Co	unt,							
Material	Size Rang	le (mm)	Count	1										
silt/clay	0	0.062		##										
very fine sand	0.062	0.13		##										
fine sand	0.13	0.25		##	Note	Richland	Creek XS 3	3						
medium sand	0.25	0.5		##										
coarse sand	0.5	1		##	1000/			F	Pebble Cou	nt,	_			10
very coarse sand	1	2		##	100%									18
very fine gravel	2	4	2	##	90%									16
fine gravel	4	6	1	##										10
fine gravel	6	8	3	##	80% +						7			14
medium gravel	8	11	8	##	Бс 70% —									5
medium gravel	11	16	2	##										12 <u>–</u>
coarse gravel	16	22	4	##	<u>ق</u> 60% +									
coarse gravel	22	32	5	##	t 50%									
very coarse gravel	32	45	15	##	- 20 V									8 00
very coarse gravel	45	64	10	##	8 40%					!	╟╂╂┼╂			, intic
small coople	64	90	10	##	200/									6 <u>le</u>
	90	120	15	##	30%					, í				
verv large cobble	120	256	13	##	20%					_/				4
small boulder	256	362		##	1.0%									2
small boulder	362	512		##	10%									-
medium boulder	512	1024		##	0% ∔└──			┉┉		┛╾┛╾┛╾┩╌┥	╹┿╋╼┚╼┦╼┦╼			0
large boulder	1024	2048		##	0.01	0.1		1	10		100	1000	1000	0
very large boulder	2048	4096		##				r	oarticle size	(mm)				
	total parti	cle count:	100	1				r		()	cumula	ative %	# of particl	es
bedrock][based on		size perc	ent less t	han (mm)			particl	e size distri	bution
clay hardpan		_		1	sediment	D16	D35	D50	D65	D84	D95	gradation	geo mean	std dev
detritus/wood				1	particles only	16.000	40.17	64.0	88	152	224	3.2	49.3	3.1
artificial				1	based on		percent	by substr	ate type			•		
	tc	otal count:	100	1	total count	silt/clay	sand	gravel	cobble	boulder	bedrock	hardpan	wood/det	artificial
				ll I		0%	0%	50%	50%	0%	0%	0%	0%	0%

Appendix F

Sediment Transport Data

Sediment Sampling and Entrainment at the Un-named Tributary to Back Creek

Four pebble counts were taken in the project reaches and two pebble counts taken in the upstream reference reach. Five bed samples were taken in the project reaches, both surface & subsurface at each location. Two bar samples were taken; one side and one point. Two scour chains, a rain gage and two flow gages were installed.

Observations

From the pebble counts, there are variations in the channel bed, with a noticeable trend to finer beds in the downstream direction. This would make sense for a watershed and geological point of view. The upper reaches are dominated by channery deposits from tributaries that the existing channel has cut through. The lower reach is close to the Back Creek confluence and would be dominated by backwater effects from the main channel, as the Back Creek Lake reservoir is just downstream.

Of the channel bed samples, the one at XS3 (SC2) does not follow the trend of downstream fining in the subsurface sample. XS3 has all the indications of a cattle trod streambed. The armour ratio between the surface and subsurface sample is very low. This occurs when the cattle hooves mix the channel bed, which leads to the loss of fines from the subsurface. There are insignificant differences between these two samples, and these samples do not fall within the trend of the other three bed samples or the four pebble counts. The channel samples from SC1 also show sign of being heavily trodded. Having only two sample immediately showing significant cattle damage is actually quite amazing considering the heard at the project site.

The bed samples have several significant trends. First there is a downstream fining. Second, the D84 of the subsurface sample is close to the D50 of the surface sample indicating that the D50 of the channel bed should be mobilized during bankfull events. The armour ratio of the three bed samples range from 2.1 to 2.8 (increasing downsteam) which is another indication that the channel bed surface is active at bankfull flows. An active bed is one where the subsurface is a good indication of the bedload sediment transport in the stream system. Third, while there are decent amounts of sand in the subsurface, ranging from 11% to 25%, there is no indication in the pebble counts or bed surface bulk samples of any sand at all. However, all of the bar samples have high sand content, ranging from 29% to 66%. Therefore the channel bed does not record the sand transport that is obvious in the system.

There are two broad methods of sediment transport analysis developed by Gilbert in 1914, first to look at the entire channel bed in sediment transport modeling, or to look at the competency of the channel to move the largest observed in sediment transport.

When four of the channel bed samples are subjected to entire bed sediment transport modeling, there are several indicators that the surface and subsurface are not in balance. Such widespread inconsistencies point to the fact that all of the sample locations are effected by cattle trodding. The two scour chain sites, looked the most alluvial and easiest to install a chain. However by being the most alluvial, the cattle trodding had the highest impacts. The less alluvial sites were more armoured and less likely to be mixed. However, the mixing that did occur was enough to unbalance the surface and subsurface samples. This natural balance was examined in two ways, first: could the

surface and subsurface samples cross predict sediment transport rates with shear stress, and second: could the surface and subsurface samples predict the other's D50 with shear stress.

When the channel samples were modeled for the sediment transport rates, only two spots show reasonable results that however had shallower flow depths than had been expected. When the modeling was examined for the D50 balance most results were absurdly high or low and the best results were at the same two spots as before and they produced deeper flow depths than the previous analysis.

The sediment transport analysis based on the entrainment of the largest particles thought to be in motion was attempted in three ways. First scour chains were installed at two sites, however the channel beds seem to have mixed and then compacted by the cattle. After several bankfull events, there still had not been any scour and redeposit at these two locations. No sampling could be performed this way.

When the channel bed samples were examined directly, the largest particles in the channel were all outside of the valid range of any of Andrew's (1983, 1994) equations. When the Wilcock-Crowe (2003) equation was used, it consistently produced shear result indicating that out of bank flow events are required to move these particle sizes.

Finally when the bar samples were compared to the channel beds, only the point bar sample had reasonable results. Upstream at XS1, the bar sample was 2/3rds sand and the channel bed was extremely narrowly sorted. This is an indication of extreme local turbulence washing the channel bed into a narrow gradation range and suspending the sand into the flow. The side bar sample would then be more representative of the local wash load and not the bed load, so it could not be used. Downstream at XS3, the point bar sample was somewhat unique in the channel system because there were very few well-developed point bars. When the D84 of the point bar was compared to the channel bed D50 it produced a flow depth that matched the reference reach and regional curve expectation.

Conclusions

Because of the trampled condition of SC1 & XS3, these sampled subsurfaces cannot be used in any meaningful way in a sediment transport analysis.

Because of the absence of sand in the surface bulk samples, a full range sediment transport analysis is not possible from these samples. These samples may be used in an entrainment type calculation of the largest particle in motion. However, the recent methods of Dave Rosgen (to perform these calculations using Andrews equations) do not fit the data set from the McCain property very well.

The fact that sand is missing in the streambed is an indication that this tributary primarily acts as a transport reach. It is likely that this project site is supply limited for the sand fraction. Meaning that the upstream supply of sand will cut off before the project's reaches' capability of transport this sand. As a consequence, the channel bed will wash clean of sand and store this last of the sand transport in the shallow pool locations as the stream flow recedes after each bankfull flow event. Because this stream acts so much like a transport channel, the channel bed does not truly represent a

regime channel, therefore it's not surprising that the sediment transport parameters will fall outside of normal alluvial stream channel characteristics.

The entrainment calculation is based on assessing the largest particle known to be transported during bankfull events. However these particle sizes are much larger than the D50 of the channel bed. Therefore, the use of "near equal mobility" functions, like Andrew's (1983, 1994) equations, are not possible because the data exceeds the 1.3 x D50 upper size limitation of these equations. Only XS1 comes close to the published valid range for Andrew's equation and this location sowed signs of extreme turbulence. For the data range of the McCain site, a "near no-hiding" function, like the Wilcock-Crowe (2003) equations, are appropriate.

The "near no-hiding" reference shear stress for mobility from the Wilcock-Crowe function is:

$$\tau_{ri} = \tau_{rs50} \left(\frac{D_i}{D_{s50}}\right)^{0.67}$$

where:

$$\tau_{rm}^{*} = 0.036$$

for a gravel bed.

$$\tau_{rs50} = \tau_{rm}^* (\rho_s - \rho) g D_{s50}$$

Based on the bar samples at XS3, a point shear velocity of 0.201 m/s (0.66 fps)was selected for the channel design. When this shear velocity was combined with a design Q of around 2.834 m³/s (100 cfs), four reaches with differing channel gradients produced cross sectional geometry that fit well with the range of geometry observed in the reference reach. When the hydraulic radius and average channel gradient from the two steepest reaches was examined, the design point shear stress was converted back to an average shear stress of 0.1565 m/s. This agreed amazing well with the average shear stress of 0.1566 m/s from the entrainment calculations, shown below.

Andrews, E.D. (1983). "Entrainment of Gravel from Natural Sorted Riverbed Material," Geologic Society of America Bulletin 94, 1225-1231.

Andrews, E.D. (1994). "Marginal Bedload in a Gravel-Bed Stream, Sage Hen Creek, California," Water Resources Research, 30, 2241-2250

Wilcock, P.R. and Crowe, J.C. (2003). "Surface-Based Transport Model for Mixed-Size Sediment", *Journal of Hydraulic Engineering*, ASCE, 129(2), pp 120-128.

McCain Sediment Entrainment Calculations

	Rea	ach 1	Reach 2			
Riffle/Bar			Riffle/Bar			
D50=	45.9	Riffle D50	D50=	25.9	Riffle D50	
D84=	90.0	Riffle D84	D84=	83.0	Riffle D84	
D^50=	23.1	Bar D50	D^50=		Bar D50	
Di=	63.5	Bar Largest	Di=		Bar Largest	
Di2=	38.1	Bar 2nd Largest	Di2=		Bar 2nd Largest	
Pavement/Su	bpavement		Pavement/Su	ubpavement		
D50=	40.6	Pavement D50	D50=	25.2	Pavement D50	
D84=	49.3	Pavement D84	D84=	43.4	Pavement D84	
D^50=	19.3	Subpavement D50	D^50=	10.5	Subpavement D50	
Di=	57.2	Subpavement Largest	Di=	57.2	Subpavement Largest	
Di2=	47.6	Subpavement 2nd Largest	Di2=	44.5	Subpavement 2nd Largest	
Datia of large	at to ourfage		Datia of large	at to ourfood	DEO	
Ratio of larges	1 28	Dou Bar Largast	Ratio of large		Bar Largost	
	0.83	Bar 2nd Largost		0.00	Bar 2nd Largest	
	1 25	Subpayement Largest		2 21	Subpayement Largest	
	1.20	Subpavement 2nd Largest		1 72	Subpavement 2nd Largest	
	1104	Suspavement 2nd Largest			Subpavement 2nd Largest	
	0.0360	Tc*, 50		0.0360	Tc*, 50	
Pa	42.9566	Tc,50	Pa	24.2391	Tc,50	
Shear Stress	Levels		Shear Stress	Levels		
Pa	47.7343	Bar Largest	Pa	0.0000	Bar Largest	
Pa	41.1279	Bar 2nd Largest	Pa	0.0000	Bar 2nd Largest	
Pa	45.8893	Subpavement Largest	Pa	34.9408	Subpavement Largest	
Pa	43.3812	Subpavement 2nd Largest	Pa	29.7961	Subpavement 2nd Largest	
lbs/ft2	1.00	Bar Largest	lbs/ft2	0.00	Bar Largest	
lbs/ft2	0.86	Bar 2nd Largest	lbs/ft2	0.00	Bar 2nd Largest	
lbs/ft2	0.96	Subpavement Largest	lbs/ft2	0.73	Subpavement Largest	
lbs/ft2	0.91	Subpavement 2nd Largest	lbs/ft2	0.62	Subpavement 2nd Largest	

McCain Sediment Entrainment Calculations

	Rea	ach 3	Reach 4			
Riffle/Bar			Riffle/Bar			
D50=	25.4	Riffle D50	D50=	11.6	Riffle D50	
D84=	47.9	Riffle D84	D84=	43.0	Riffle D84	
D^50=	9.2	Bar D50	D^50=		Bar D50	
Di=	63.5	Bar Largest	Di=		Bar Largest	
Di2=	38.1	Bar 2nd Largest	Di2=		Bar 2nd Largest	
Pavement/Su	ubpavement		Pavement/Su	ubpavement		
D50= 25.4		Pavement D50	D50=	17.4	Pavement D50	
D84=	47.9	Pavement D84	D84=	26.3	Pavement D84	
D^50=	19.6	Subpavement D50	D^50=	6.1	Subpavement D50	
Di=	50.8	Subpavement Largest	Di=	38.1	Subpavement Largest	
Di2=	38.1	Subpavement 2nd Largest	Di2=	38.1	Subpavement 2nd Largest	
Ratio of large	est to surface	D50	Ratio of large	est to surface	D50	
J J	2.50	Bar Largest	Ŭ	0.00	Bar Largest	
	1.50	Bar 2nd Largest		0.00	Bar 2nd Largest	
	2.00	Subpavement Largest		3.28	Subpavement Largest	
	1.50	Subpavement 2nd Largest		3.28	Subpavement 2nd Largest	
	0.0360	Tc*, 50		0.0360	Tc*, 50	
Pa	23.7712	Тс,50	Pa	10.8561	Tc,50	
Shear Stress	Levels		Shear Stress	Levels		
Pa	37.7385	Bar Largest	Ра	0.0000	Bar Largest	
Pa	27.3403	Bar 2nd Largest	Ра	0.0000	Bar 2nd Largest	
Pa	32.0142	Subpavement Largest	Ра	21.9185	Subpavement Largest	
Pa	27.3403	Subpavement 2nd Largest	Ра	21.9185	Subpavement 2nd Largest	
lbs/ft2	0.79	Bar Largest	lbs/ft2	0.00	Bar Largest	
lbs/ft2	0.57	Bar 2nd Largest	lbs/ft2	0.00	Bar 2nd Largest	
lbs/ft2	0.67	Subpavement Largest	lbs/ft2	0.46	Subpavement Largest	
lbs/ft2	0.57	Subpavement 2nd Largest	lbs/ft2	0.46	Subpavement 2nd Largest	

McCain Sediment Entrainment Calculations

Reach 3							
Riffle/Bar	Riffle/Bar						
D50=	25.4	Riffle D50					
D84=	47.9	Riffle D84					
D^50=	9.2	Bar D50					
Di=	63.5	Bar Largest					
Di2=	38.1	Bar 2nd Largest					
Pavement/Subpav	vement						
D50=	25.4	Pavement D50					
D84=	47.9	Pavement D84					
D^50=	19.6	Subpavement D50					
Di=	50.8	Subpavement Largest					
Di2=	38.1	Subpavement 2nd Largest					

Point Bar Comparison							
28.4 D84 point bar							
mm	28.4						
Ра	24.5258						
lbs/ft2	0.512						
m/s	0.1566	u*					
ft/s	0.5137						
slope	0.38%	average					
m	0.66	depth					
ft	2.16						

Cross Sec	tion									
				Gauca	2 Pi#		Creek			
				Gauge			Creek			
10	5				_ + _ L		L _ L _ I _ J _ J _ J _	+		
104	4									
103	3		!_]! _! _!		<u> </u>					
_ 102	2									
<u>ل</u> ال	1				= + = +					
01 <mark>gt</mark> i	0	:=:=:=:=:=: :=:=:=:=:=:=:								
	9 🔶									
98	8									
97	7				= = = = =					
96	6		<u>''- + - + -</u> '' + - + - ' + - + - + -							
99	5			<u> </u>		40				
	0	10	20	30) altia fina	40 	50	60	70	80
				VVI	ath tro	III RIVER LEFT	ιο Right (π)			
			section:	Gauge 2						
			stream:	UT to Back	Cree	k				
			location:	about 1 fee	t US	of Gauge 2				
			description:	BS on Low	er RF	R Spike is 5	.95			
	a mait	height of inst	trument (ft):	105.95		F 0		14/ 600	ahannal	Manaingla
notes	omit	distance (ft)	FS (ft)	elevation		r5 bankfull	top of bank	vv ipa (ft)	slope (%)	"n"
LBKP		0	6.96	98.99		8.3	6.6	200.0	0.6	0.03
		5	6.98	98.97		97.65	99.35			
		10	6.9	99.05		i				
		15	7.06	98.89		dimensions	S		0.0	d manual
		20	6.79	99.16		24.4	x-section are	ea	2.2	d mean
LTOB		23	0.0 6.6	99.35		2.5	d max		14.4	hvd radi
LEW		29.5	10.75	95.2		4.2	bank ht		5.1	w/d ratio
		32	10.68	95.27		200.0	W flood pror	ne area	17.9	ent ratio
		34	10.6	95.35		December 11				
		30	10.65	95.3			velocity (ft/o	90)		
RFW		39	10.42	95.53		133 0	discharge ra	te, Q (cfs)		
		40	7.66	98.29		0.63	shear stress	((lbs/ft sa)		
		42	6.43	99.52		0.57	shear veloci	ty (ft/sec)		
RTOB		44	5.03	100.92		4.463	unit stream	power (lbs/f	t/sec)	
		46	5.14	100.81		0.42	Froude num	ber		
		50	5.62 5.44	100.33		9.5 39 9	threshold ar	r u/u" ain size (mr	m)	
		70	5.03	100.92		00.0	an conoid gr		,	
						check from	channel mat	erial		
							measured D	84 (mm)		
						0.0	relative roug	hness	0.0	fric. factor
						0.000	Manning's n	from chann	nel material	

McCain

McCain

McCain Site

----- Gauge 1 ----- Gauge 2

Cross Sect	ion									
	Scour Chain 2 Rine OT to Back Creek									
				++-	_ +	++			+ + _	-++
104				<u></u>				<u></u>		<u></u>
102					====					- <u>+</u> <u>+</u>
100										$\begin{array}{c} - 1 \\$
E 100										$\begin{array}{c} - + + $
8e tio		 		·		+ + +				<u>-++</u>
e ve 96				:i==i==i=	====					
ш										
94	= = =			icciccic						
92	= = =									
90				<u>++-</u> ++-	= = = =	+++				-++
	0		5		10		15		20	25
				W	idth fro	m River Left t	to Right (ft)			
			section:	Scour Cha	in 2					
				Riffle	_					
			stream:	UT to Back		k Spika ia 2 '	<u>วา</u>			
			description:	BS ON IOW	er KK	Spike is 3.	32			
		height of ins	trument (ft):	103.32						
	omit	distance	FS			FS	FS	W fpa	channel	Manning's
notes	pt.	(ft)	(ft)	elevation		bankfull	top of bank	(ft)	slope (%)	"n"
LBKP Top		0	7.39	95.93		8.5 04.82	7.54 05.78			
LEW		4.2	10.7	92.62		34.02	35.70			
		5	10.97	92.35		dimensions	3			
REW/WS		7	10.68	92.64		21.1	x-section ar	ea	1.5	d mean
Chain		8.6	10.44	92.88		14.3	width		16.2	wet P
RBOB		12	10.05	93.27		2.5	d max		1.3	hyd radi
DBKD Ton		18	8.42	94.9		3.4	bank ht	00.0700	9.8	w/d ratio
коке-тор			1.95	90.07		0.0		ne aled	0.0	
						hydraulics				
						0.0	velocity (ft/s	ec)		
						0.0	discharge ra	ate, Q (cfs)		
						0.00	shear stress	s ((lbs/ft sq)		
						0.00	shear veloci	ty (ft/sec)	(t/200)	
						0.000	Eroude num	power (IDS/ ber	ivsec)	
						0.00	friction facto	or u/u*		
						0.0 0.0	threshold an	ain size (m	m)	
						·		\\		
						check from	channel mat	erial		
							measured D	084 (mm)		
						0.0	relative roug	hness	0.0	fric. factor
						0.000	Manning's n	from chan	nel material	

Sample Sieve Analysis						
Smallest Sieve	Weight		Percent			
Passed (mm)	(oz)	% Item	Finer Than			
2.0	123.9	35.9%	35.9%			
4.0	30.8	8.9%	44.8%			
8.0	49.4	14.3%	59.1%			
16.0	75.8	21.9%	81.0%			
31.5	50.9	14.7%	95.7%			
64.0	14.7	4.3%	100.0%			
128.0	0.0	0.0%	100.0%			
256.0	0.0	0.0%	100.0%			
512.0	0.0	0.0%	100.0%			
Total:	345.5	100%				

Sample Sieve Analysis						
Smallest Sieve	Weight		Percent			
Passed (mm)	(oz)	% Item	Finer Than			
2.0	91.8	42.2%	42.2%			
4.0	15.3	7.0%	49.2%			
8.0	28.9	13.3%	62.5%			
16.0	44.4	20.4%	82.9%			
31.5	33.6	15.4%	98.3%			
64.0	3.7	1.7%	100.0%			
128.0	0.0	0.0%	100.0%			
256.0	0.0	0.0%	100.0%			
512.0	0.0	0.0%	100.0%			
Total:	217.7	100%				

Sample Sieve Analysis						
Smallest Sieve	Weight		Percent			
Passed (mm)	(oz)	% Item	Finer Than			
2.0	0	0.0%	0.0%			
4.0	0.0	0.0%	0.0%			
8.0	0.0	0.0%	0.0%			
16.0	0.0	0.0%	0.0%			
32.0	2.5	8.3%	8.3%			
64.0	27.5	91.7%	100.0%			
128.0	0.0	0.0%	100.0%			
256.0	0.0	0.0%	100.0%			
512.0	0.0	0.0%	100.0%			
Total:	30.0	100%				

Sample Sieve Analysis						
Smallest Sieve	Weight		Percent			
Passed (mm)	(oz)	% Item	Finer Than			
2.0	36	11.4%	11.4%			
4.0	15.1	4.8%	16.1%			
8.0	35.0	11.0%	27.2%			
16.0	49.0	15.5%	42.6%			
32.0	86.5	27.3%	69.9%			
64.0	95.5	30.1%	100.0%			
128.0	0.0	0.0%	100.0%			
256.0	0.0	0.0%	100.0%			
512.0	0.0	0.0%	100.0%			
Total:	317.1	100%				

Bar Sample Sieve Analysis					
Smallest Sieve	Weight		Percent		
Passed (mm)	(oz)	% Item	Finer Than		
2.0	100	66.0%	66.0%		
4.0	5.5	3.6%	69.6%		
8.0	7.0	4.6%	74.3%		
16.0	5.0	3.3%	77.6%		
32.0	18.5	12.2%	89.8%		
64.0	15.5	10.2%	100.0%		
128.0	0.0	0.0%	100.0%		
256.0	0.0	0.0%	100.0%		
512.0	0.0	0.0%	100.0%		
Total:	151.5	100%			

Sample Sieve Analysis						
Smallest Sieve	Weight		Percent			
Passed (mm)	(oz)	% Item	Finer Than			
2.0	0	0.0%	0.0%			
4.0	1.5	7.7%	7.7%			
8.0	3.0	15.4%	23.1%			
16.0	1.0	5.1%	28.2%			
32.0	6.5	33.3%	61.5%			
64.0	7.5	38.5%	100.0%			
128.0	0.0	0.0%	100.0%			
256.0	0.0	0.0%	100.0%			
512.0	0.0	0.0%	100.0%			
Total:	19.5	100%				

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	24	17.7%	17.7%
4.0	13.5	10.0%	27.7%
8.0	19.0	14.0%	41.7%
16.0	29.0	21.4%	63.1%
32.0	30.5	22.5%	85.6%
64.0	19.5	14.4%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	135.5	100%	

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	0	0.0%	0.0%
4.0	0.0	0.0%	0.0%
8.0	3.0	10.0%	10.0%
16.0	5.0	16.7%	26.7%
32.0	10.5	35.0%	61.7%
64.0	11.5	38.3%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	30.0	100%	

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	16	10.4%	10.4%
4.0	9.5	6.2%	16.6%
8.0	15.0	9.8%	26.4%
16.0	25.0	16.3%	42.7%
32.0	38.5	25.1%	67.8%
64.0	49.5	32.2%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	153.5	100%	

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	92	29.3%	29.3%
4.0	19.5	6.2%	35.6%
8.0	31.0	9.9%	45.5%
16.0	69.0	22.0%	67.5%
32.0	62.5	19.9%	87.4%
64.0	39.5	12.6%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	313.5	100%	

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	0	0.0%	0.0%
4.0	0.0	0.0%	0.0%
8.0	3.0	16.2%	16.2%
16.0	5.0	27.0%	43.2%
32.0	10.5	56.8%	100.0%
64.0	0.0	0.0%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	18.5	100%	

Sample Sieve Analysis			
Smallest Sieve	Weight		Percent
Passed (mm)	(oz)	% Item	Finer Than
2.0	28	25.1%	25.1%
4.0	13.5	12.1%	37.2%
8.0	23.0	20.6%	57.8%
16.0	25.0	22.4%	80.3%
32.0	18.5	16.6%	96.9%
64.0	3.5	3.1%	100.0%
128.0	0.0	0.0%	100.0%
256.0	0.0	0.0%	100.0%
512.0	0.0	0.0%	100.0%
Total:	111.5	100%	

